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Abstract
East-Central Asia is one of the most vulnerable and sensitive regions to climate change,
and the variability of extreme precipitation attracts great attention due to the large
population and the importance of its economy. Here, three special runs with the Com-
munity Earth System Model (CESM) are used to project the changes in representative
extreme precipitation indices (Rx1day, Rx5day, R95p, SDII) over East-Central Asia
under the 1.5 °C and 2 °C Paris Agreement limits. The results indicate that Rx1day
and Rx5day will increase by 28% and 15%, respectively, under the 1.5 °C warming level
relative to the historical period (1971–2000). Most areas over East-Central Asia are
projected to experience an accelerated increase in response to a further 0.5 °C warming.
Specifically, humid areas (HAs) are projected to experience a greater increase in R95p
annual days and area fraction, whereas arid and semiarid areas (ASAs) may have
threefold higher risks. The proportion of extreme precipitation in total will increase
~10% in most HAs in response to the 0.5 °C additional warming. Holding global
warming at 1.5 °C instead of 2 °C reduces the occurrence of R95p annual days by ~3
days/year in humid areas and ~1 day/year in ASAs. For SDII, most HAs will experience
0.2–0.6 mm/day and 0.2–0.4 mm/day increases in 1.5 °C or 2 °C warming limits,
especially in Southeast China and the Himalayas. Therefore, limiting global warming
to under 1.5 °C is beneficial to reducing the occurrence and associated impact of
precipitation extremes in East-Central Asia.
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1 Introduction

As a meteorological phenomenon, extreme precipitation is responsible for many catastrophes
and often causes disasters such as floods, which have great impacts on economic development,
social stability, and people’s livelihoods (Orlowsky and Seneviratne 2012; Yang et al. 2013;
Scherrer et al. 2016). For instance, prolonged heavy precipitation led to the worst flooding in
Pakistan’s history in 2010, resulting in nearly 3000 deaths and affecting 20 million people. In
Nara Prefecture of Japan, the 72-h rainfall record was broken in 2011, and that event resulted
in 73 deaths and 20 missing people (Coumou and Rahmstorf 2012). It is crucial that the
understanding of extreme precipitation changes be improved to better prepare, adapt, and
mitigate the impacts of future events as the climate changes.

Due to the effect of land-sea thermal differences and human activities, East-Central Asia
(10°–55°N, 60°–150°E) is one of the world’s most vulnerable regions to extreme precipitation
and its consequences (Zhai et al. 2005; Ren and Zhou 2014; Zhao et al. 2015; Lin et al. 2016;
Guan et al. 2017; Zhou et al. 2018). Given the impacts of precipitation extremes, such
extremes have become a topic of interest in recent years, with efforts to improve the
understanding of historic changes and future projections especially prominent (Alexander
et al. 2006; Kharin et al. 2013; Sillmann et al. 2013a, b). Since the Paris Agreement set a
goal for limiting global warming below 2 °C and preferentially to 1.5 °C relative to pre-
industrial levels, the variation in extreme climate conditions under future warming scenarios
has also become an area of active research (Zhou and Chen 2015; Chen and Sun 2018; Dosio
and Fischer 2018; King et al. 2018; Li et al. 2018; Wei et al. 2019). Lin et al. (2018) indicated
that the average precipitation in China will increase by 11.6% (1.5 °C) and 13.3% (2 °C)
compared with the 1976–2005 period. Chen and Sun (2017) pointed out that human influence
will cause half of the occurrence probability increase of severe extremes in China. Zhang et al.
(2018) indicated that 0.5 °C further warming would aggravate areal and population exposures
to once-in-20-year extreme precipitation events by 25% in East Asia. Kusunoki (2017) pointed
out that almost all eastern China areas are projected to experience more precipitation during
2079 to 2099. Other studies have also indicated that continued global temperature increases are
projected to induce more extreme precipitation events in the future (Endo et al. 2017; Wang
et al. 2017). There are several methods that can be used to form projections for climate
extremes in different warmer worlds (e.g., the Coupled Model Intercomparison Project phase 5
(CMIP5) time-sampling and prescribed sea surface temperature (SST) simulations) (Mitchell
et al. 2016; Schleussner et al. 2016; King et al. 2017). CMIP5 time sampling may utilize all
four representative concentration pathways (RCPs) to generate a large sample of model years,
but these are based on transient climates for low-end global warming limits, such as 1.5 °C and
2 °C. Atmosphere-only model simulations use prescribed SSTs, representing the recent period
but with additional warming, to project future climates. However, there is an assumption that
the recent period is representative of current climate variability and that coupled processes are
not important to the extreme being investigated (Fischer et al. 2018). Here, we utilized three
Community Earth System Model (CESM) experiments to analyze the spatiotemporal differ-
ence between the 1.5 °C and 2 °C warming limits and the recent historical period (Sanderson
et al. 2017; Zhang et al. 2019a). To our knowledge, research on East-Central Asia extreme
precipitation predictions using CESM 1.5 °C and 2 °C low warming runs (LWR) is scarce.

Precipitation in East-Central Asia is distributed unevenly owing to the influence of the
monsoon and warm moist air from the ocean (Li et al. 2016; Xing et al. 2016). Monsoon areas
have abundant precipitation, while inland areas, where there is a relative lack of water vapor
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source, have little precipitation but high potential evapotranspiration. This difference in the
mean climate state and interannual variability in the monsoon poses a challenge to water
supply management (Huang et al. 2016a; Huang et al. 2017). The difference in background
climate state and in precipitation extremes between these regions makes it necessary to analyze
them separately. Thus, to be more precise and objective, we divide East-Central Asia into two
subparts based on the aridity index (AI): humid areas (HAs) and arid and semiarid areas
(ASAs). ASAs are defined as regions with an AI < 0.65 (Middleton and Thomas 1997). We
utilized the AI provided by Feng and Fu (2013) and calculated for the historical period as a
basis for the dry-wet division. For more details about the AI, please refer to (Scheff and
Frierson 2014; Huang et al. 2016b).

In this study, we compared and analyzed four relevant and widely used extreme precipi-
tation indices (Rx1day, Rx5day, R95p and SDII) (Karl et al. 1999; Peterson et al. 2001) and
tried to answer the following three questions: (1) Will a remarkable difference appear in East-
Central Asia under a 1.5 °C or 2 °C global warming future? (2) What is the difference due to a
further 0.5 °C warming? (3) Are there differences in projections for ASAs and HAs?

2 Data and methods

2.1 Model data

We used the fully coupled climate model CESM released by the National Center for Atmospheric
Research (NCAR) for our analysis of extreme precipitation projections under 1.5 °C and 2 °C global
warming limits (Hurrell et al. 2013). The CESMLWR comprises a 10-member ensemble for 1.5 °C
and 2 °C scenarios called 1 pt5 and 2 pt., respectively (Kay et al. 2015; Sanderson et al. 2016). By
setting the radiative forcing of greenhouse gases, the global mean temperature relative to pre-
industrial levels would rise monotonically to 1.5 °C (2 °C) by 2090–2100 under LWR 1 pt5 (2 pt.)
scenarios.We also usedRCP4.5 andRCP8.5 to provide further comparisons. The number of runs in
the CESM models under the RCP4.5 scenarios is 15, and under the RCP8.5 scenarios, it is 30.
Under RCPs, we define the 1.5 °C (2 °C) global warming level as the 11-year window based on the
centers of chosen years (RCP4.5 and RCP8.5) when the 11-year mean temperature rises to 1.5 °C
(2 °C) relative to pre-industrial levels. Therefore, the CESM LWR scenario represents the equilib-
rium climate response, while the RCPs represent transient climate response scenarios. The equilib-
rium climate response scenario means that the average global warming will stabilize at 1.5 °C or
2 °C by the end of the twenty-first century. Moreover, the carbon dioxide equivalence emission is
matchedwith global temperature rises. For transient climate responses, such asRCP4.5 andRCP8.5,
the global mean temperature would pass through 1.5 °C or 2 °C, and the final increase exceeds these
two warming limits. This response might overestimate the temperature increase and cause some
related influence. The dynamic and thermodynamic systems of the climate model simulation are not
in equilibrium. Based on the climate model work principle, the equilibrium response scenario is
considered more acceptable than the transient one. More details about CESM experiments can be
found in Sanderson et al. (2017).

2.2 Extreme precipitation indices

Four extreme precipitation indices defined by the Expert Team for Climate Change Detection
Monitoring and Indices (ETCCDI)were selected for analysis of the changes in extreme precipitation
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events in warmer futures (Perkins et al. 2012; Donat et al. 2013; Perkins and Alexander 2013).
Further details of the four selected extreme precipitation indices are provided in Table 1.

Rx1day and Rx5day are probably related to specific and possibly meteorologically
distinct extreme precipitation events. R95p is useful in reflecting the absolute value
change in total annual extreme precipitation. SDII is used to measure the intensity of
precipitation on wet days. Together, these indices are useful in extending our under-
standing of the changing likelihood of extreme precipitation under 1.5 °C and 2 °C
warming limits.

2.3 Probability ratio

The probability ratio (PR) is a metric to measure the probability of a specific event
having changed. The formula and method come from the epidemiological field. Since
being introduced to the climate change study area, PR has been used to detect the risk
of the events occurring. The PR as a detection and attribution method represents the
extent to which external forcing, such as global warming and the overall anthropo-
genic influence on the climate, affect extreme precipitation events (Fischer and Knutti
2015). The formula used is as shown in (1).

PR ¼ P1=P0 ð1Þ
Here, P0 refers to the extreme precipitation indices in a historical period (note that this
is different from many event attribution studies, where an approximation for a pre-
industrial climate is represented by P0) and P1 represents the probability of the event
under a 1.5 °C or 2 °C warming future. The PR statistic can be considered an
indicator for the change in the probability of the extreme precipitation indices: the
reference value is 1.0, which would mean future likelihoods are the same as now. If
PR > 1.0, the occurrence (for Rx1day and Rx5day) or intensity (for R95p and SDII) of
precipitation extremes will increase, and vice versa (Stone and Allen 2005).

Table 1 Core set of four selected extreme indices recommended by the ETCCDI

Label Name Definition Units

RX1day Maximum 1 day
precipitation

Let PRij be the daily precipitation amount on day i
in period j. The maximum 1-day value for period j are

RX1dayj =max (PRij)
It should be noted that the annual values are average monthly values.

mm

RX5day Maximum
consecutive
5 days
precipitation

Let PRkj be the precipitation amount for the 5-day
interval ending k, period j. Then, maximum 5-day
values for period j are

RX5dayj =max (PRkj)
It should be noted that the annual values are average monthly values.

mm

R95p Annual total
precipitation in
very wet days

Let PRwj be the daily precipitation amount on a wet day
w in period i and let PRwn95 be the 95th percentile of precipitation
on wet days in the 1971–2000 period. If W represents the number
of wet days in the period, then R95pj ¼ ∑W

w¼1PRwj(PRwj = PRwn95)

mm

SDII Simple
daily intensity

Let PRwj be the daily precipitation amount on wet days, PR > =
1 mm in period j. If W represents number of wet days in j, then:

SDII j ¼ ∑W
w¼1PRwj

� �
=W

mm/day
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3 Results

3.1 Spatiotemporal change in the four indices

For Rx1day under 1.5 °C global warming, an obvious dividing line could be found in all four
experiments (Fig. 1-4). It is worth mentioning that this boundary also separates ASAs from
HAs. Southeast China and the Himalayas witness a rise of over 2 mm, based on the CESM
LWR simulations, while the rest of the HAs experience a projected increase of 1–2 mm in a
1.5 °C world (Fig. 1(a)). The spatial patterns of RCP4.5 and RCP8.5 are similar to that in
LWR. Nevertheless, the absolute increase in Southeast China is lower in the RCPs than in the
LWR simulations (Fig. 1(c)(e)). There is consistency between Rx1day and Rx5day projections
in their spatial pattern. There is a projected increase in Rx5day of over 6 mm in Southeast
China and the Himalayas according to LWR, three times as much as for Rx1day (Fig. 2(a)).

Fig. 1 Spatial changes in Rx1day (mm) in the 1.5 °C limits relative to (minus, the same below) the historical
period for (a) 1 pt5, (c) RCP4.5, (e) RCP8.5. All the same but for 2 °C relative to 1.5 °C in (b) 2 pt., (d) RCP4.5,
(f) RCP8.5. The black dotted parts represent ASAs. The red dotted parts represent the changes passing a 95%
significance test
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The R95p index is projected to increase by over 200 mm under 1.5 °C global warming, such
that a larger portion of the total annual precipitation in HAs, such as Southeast China and the
Himalayas, is due to extreme rainfall (Fig. 3(a)). Likewise, RCP4.5 and RCP8.5 in Rx5day
and R95p increase less compared with the LWR simulations (Fig. 2(c)(e) and Fig. 3(c)(e)).
SDII represents the simple daily intensity of precipitation on wet days. If SDII increases in the
future, the risk for extreme precipitation will be higher. From Fig. 4, we can see that most HAs
are projected to experience a 0.5 mm/day increase under 1.5 °C relative to the historical period,
whereas SDII in North India will decrease by approximately 0.5 mm/day (Fig. 4(a)(c)(e)).

For a further 0.5 °C warming in Rx1day, some regions (Southeast China and the
Himalayas) still experience a modest increase of approximately 0.5–1 mm (Fig. 1(b)).
Additionally, the difference in spatial pattern between the LWR and the other two experiments
narrows (Fig. 1(d)(f)). Some regions, such as North China, North India and Pakistan, near the
dry-wet transition zone, are simulated to experience a projected minor decrease in Rx1day. In
these regions, increases in temperature and extreme precipitation are not positively related.
This phenomenon might be induced by hydrologic cycle issues in the CESM. North India and
Pakistan are located in the subtropical ASAs, which belongs to the sink branch of the Hadley

Fig. 2 The same as Fig. 1, but for Rx5day (mm)
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circulation. An additional 0.5 °C warming from 1.5 °C to 2 °C is likely to cause more moisture
divergence and then moisture content reduction (Zhang et al. 2019b). Thus, North India and
Pakistan are projected to see decreasing trends in some extreme precipitation indices. The
same phenomenon also occurs in Rx5day, but the amplitude is twice as high as that for
Rx1day (Fig. 2(b)(d)(f)). Figure 3(b)(d)(f) illustrates that a further 0.5 °C warming is associ-
ated with an almost 100 mm increase in R95p in most HAs, illustrating a substantial benefit of
keeping global warming to the more ambitious 1.5 °C Paris limit. Compared with the 200 mm
rise under the 1.5 °C scenario relative to the historical period, a sharp acceleration appears in
the 2 °C target relative to the 1.5 °C target. The increasing or decreasing tendency of SDII is
still maintained in the mentioned areas (Fig. 4(b)(d)(f)).

The spatiotemporal change in percentage is different from that in absolute value mentioned
before (Figs. S1–S4). The change in the absolute value of extreme precipitation in ASAs is
relatively small compared with that in HAs. However, under the 1.5 °C and 2 °C warming
futures, there will be a sharp increase in the extreme precipitation percentage in most ASAs.
The specific increases in ASAs in Rx1day, Rx5day, R95p and SDII under 1.5 °C relative to
the historical period are 20–40%, 10–30%, 100–200%, and 5–15%, respectively. The

Fig. 3 The same as Fig. 1, but for R95p (mm)
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additional 0.5 °C warming provides a further 5–10% increase in both Rx1day and Rx5day. For
R95p, the average increase is 30–50%. SDII in most ASAs is projected to experience a 2–4%
increase, although North India and Pakistan will witness a slight decrease. In summary, most
ASAs may experience more extreme precipitation events in the warming future.

3.2 Probability ratio change in Rx1day and Rx5day

The absolute value changes in extreme precipitation under the 1.5 °C and 2 °C
warming limits show how rainfall extremes are projected to alter in the future, but
PR values provide likelihood changes in extremes that help inform decision-making.
Figure 5 shows the statistical distribution of PR values by gridbox in Rx1day and
Rx5day under the 1.5 °C and 2 °C global warming limits relative to the historical
period. According to Fig. 5(a),(b), only 5% of all grid points see a decrease in
Rx1day, and the rest of the area is projected to experience increases in this index,
especially for the changes higher than the 90th percentile, which rise at a higher rate.
For Rx5day, the proportion of all grid points that experience a PR below one

Fig. 4 The same as Fig. 1, but for SDII (mm/day)
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increases from 5% to 10%. This is unsurprising given that Rx5day is a less extreme
rainfall index than Rx1day and tends to exhibit behavior more similar to the mean. As
shown in Fig. 5, there is almost no distinction between the 1.5 °C and 2 °C
representative lines when considering the same experiment. However, obvious differ-
ences appear between the three experiments (LWR, RCP4.5, RCP8.5). The CESM
LWR simulation rises at the highest rate, followed by RCP4.5, and RCP8.5 presents
the lowest rate. The increase in the indices at high percentiles is higher in the LWR
simulations than under the RCPs. This indicates that the influence might be different
between transient and quasi-equilibrium simulations. ASAs are projected to experience
greater relative increases in the upper tail for these indices than HAs. This suggests
that ASAs may need to prepare for greater risks from extreme precipitation events
under global warming.

For 1.5 °C relative to the historical period, greater PR values are simulated in East-
Central Asia (with PR in most regions of 1.0–1.5) (Fig. 6(a)(c)(e)). There is no
monotonic increase in Rx1day under a further 0.5 °C warming. Central Asia and
North India, which are projected to experience substantial increases in precipitation

Fig. 5 (a) PR values in Rx1day in ASAs under 2 °C and 1.5 °C limits relative to the historical period. The x-axis
represents the percentile thresholds based on the historical period. The method is as follows: First, we calculate
the Rx1day in the historical period (average of 30 years) and under the 1.5 °C warming condition in each grid
point and obtain two three-dimensional arrays (month, latitude, longitude), both of which are 12, 47, 73,
respectively. Then, we calculate PR values using the two arrays in each grid point and set grid points in humid
areas as missing values. After that, we convert this new three-dimensional array of PR into a one-dimensional
array in ascending sequence. Finally, we set the percentile thresholds and draw the figures. (b), (c), and (d) are the
same as (a) but represent Rx1day in HAs, Rx5day in ASAs, and Rx5day in HAs, respectively
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extremes under warming to 1.5 °C, are projected to experience slight decreases between 1.5 °C
and 2 °C global warming. This again illustrates that warming and precipitation increases are not
simply positively correlated. However, most regions still show positive correlations between
temperature and extreme precipitation changes (Fig. 6(b)(d)(f)). The spatial pattern of Rx5day
is similar to that of Rx1day but with smaller PR values (Fig. 7).

3.3 Further changes in R95p

In general, the higher the extreme precipitation proportion, the greater the probability
risks. Figure 8 provides the changes in R95p as a percentage of total precipitation,
and we see that the increases in magnitude exceed 10% in HAs (Fig. 8(a)). Under
RCP4.5 and RCP 8.5, Southeast China and the Himalayas also experience increases in
the proportion of extreme precipitation, but these are lower than those projected by

Fig. 6 PR spatial changes in Rx1day in the 1.5 °C limits relative to the historical period for (a) 1 pt5, (c) RCP4.5,
(e) RCP8.5. All the same but for 2 °C relative to 1.5 °C in (b) 2 pt., (d) RCP4.5, (f) RCP8.5. The black dotted
parts represent ASAs
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the LWR. Other HAs have less obvious variation in R95p changes under the RCPs compared
with the results of the LWR (Fig. 8(c)(e)). Likewise, there is little change in ASAs based on the
three experiments. Increasing warming by 0.5 °C appears to be a double-edged sword that
would cause some regions (Southeast China and the Himalayas) to experience increased
extreme precipitation and other regions (North China and North India) to experience spatially
inhomogeneous changes and perhaps even decreases (Fig. 8(b)(d)(f)).

We use the R95p annual days change to describe the variation intensity and R95p area
fraction change for the variation range. R95p annual days means the count of total annual days
that meet the definition of R95p. The R95p area fraction indicates the variation of the R95p
percentage shift to positive or negative. Under the background of extreme precipitation
increasing, R95p annual days in HAs increase by 10.8 days, 3.8 days, and 1.5 days in the
1.5 °C limits and increase by 13.1 days, 8.4 days, and 4.2 days in the 2 °C limits according to
LWR, RCP4.5, and RCP8.5, respectively. Coincident with spatial pattern changes, the annual
day variation in ASAs is not obvious (Table S1). From the perspective of the R95p area
fraction, R95p in most HAs is projected to see increases both under the 1.5 °C and the 2 °C

Fig. 7 The same as Fig. 6, but for Rx5day
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warming limits. In contrast, only half of ASAs are expected to witness more R95p, and the
proportion of R95p in ASAs increases only slightly under 0.5 °C further warming (Table S2).

4 The mechanisms and uncertainty of the results

From the CESM model’s extreme precipitation prediction results, we can conclude that along
with the mean temperature increase, the extreme precipitation response is uneven in different
areas. In the 1.5 °C and 2 °C warming future, ASAs will tend to experience a greater mean
temperature increase than HAs due to the differences in vegetation cover, types of clouds, and
anthropogenic aerosols (Huang et al. 2017). The lower vegetation cover in ASAs leads to
lower transpiration rates, resulting in higher surface air temperatures. The thick low clouds in
HAs can effectively reflect shortwave sunlight, and their low cloud tops result in limited

Fig. 8 Spatial changes in R95p as a percentage of total precipitation in the 1.5 °C limits relative to the historical
period for (a) 1 pt5, (c) RCP4.5, (e) RCP8.5. All the same but for 2 °C relative to 1.5 °C for (b) 2 pt., (d) RCP4.5,
(f) RCP8.5. The black dotted parts represent ASAs
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longwave warming effects. In contrast, most cirrus clouds in ASAs reflect less sunlight to the
top atmosphere but absorb more atmospheric counter radiation, leading to a sharp regional
temperature increase. Moreover, anthropogenic aerosols, which are likely to cool down the
surface, are less abundant in ASAs than in HAs. Thus, due to the intensifying warming effect,
the ASAs will bear higher extreme precipitation event risks, and the extreme precipitation
percentage variation changes in most ASAs are projected to be higher than those in the HAs.
For the hydrologic cycle, HAs are likely to witness more increases in moisture convergence
and then more total precipitation, while the moisture divergence in ASAs is anomalous (Zhang
et al. 2019b). More base precipitation and moisture convergence in the warmer world drive
HAs to experience more total extreme precipitation increases.

The CESM is released by NCAR and consists of several component models and a coupler.
Each module is independent, and modules are connected by a coupler (Kay et al. 2015).
Although that design may reduce model errors as much as possible, it still has some internal
errors that are hard to eliminate because of the simulation deviation of the model from the
actual atmospheric motion state and errors in coupling. Moreover, some physical processes,
parameterized schemes and dynamic frameworks must be constantly improved. The CESM
LWR begins from a slightly different initial atmospheric state (created by randomly perturbing
temperatures at the level of round-off error). However, there are still some differences among
those runs considering extreme precipitation indices. RCP4.5 and RCP8.5 are transient
scenarios, and the response to 1.5 °C or 2 °C warming limits is not in equilibrium. This will
result in some overestimation of the temperature increase and cause some related influence, as
mentioned in the model data. Despite these problems, the three special CESM runs used in our
paper reveal that extreme precipitation will increase regardless of intensity or occurrence under
the background of global warming in the future. This is in line with most other climate models
and our knowledge. To better understand the reason for these uneven changes and their
underlying physical mechanisms, more specific global and regional climate models need to
be tested in further studies.

5 Summary and conclusions

We utilized four climate prediction experiments from CESM to investigate changes in extreme
precipitation under the 1.5 °C and 2 °C global warming limits over East-Central Asia. Under the
1.5 °Cwarming limits, extreme precipitation is projected to increase in almost all regions, especially
in Southeast China and the Himalayas.With a further 0.5 °Cwarming, most regions are projected to
experience a further increase in extreme precipitation, although it is not a linear increase. Overall,
there will be more extreme precipitation over East-Central Asia under global warming.

According to the LWR, Southeast China and the Himalayas will witness over 2 mm and
6 mm increases in Rx1day and Rx5day in the 1.5 °C warming future, respectively. However,
RCP4.5 and RCP8.5 suggest only a slight increase (perhaps due to a difference between
transient and quasi-equilibrium responses). For the 2 °C limit relative to 1.5 °C, the response of
HAs to temperature rise is almost positive, while some ASAs, such as North India, North
China, and Northeast Mongolia, indicate a moderate decrease.

The PR of Rx1day and Rx5day will grow exponentially with increasing percentile thresh-
olds, indicating that the most intense extreme precipitation events will occur more frequently
in the warming future. It is worth mentioning that the slope of PR in ASAs will be greater than
that in HAs, which means a higher relative increase in risk. Considering that ASAs are less
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resistant and more vulnerable to storms and floods, extreme precipitation events may cause
more disasters here unless adequate adaptation plans are put in place.

There is projected to be an over 200-mm increase in the amplitude of R95p in a 1.5 °C
future and a further 100-mm increase in 2 °C relative to 1.5 °C in Southeast China
and the Himalayas. The proportion of R95p in total precipitation will also have a
modest increase of approximately 10–20% in the regions previously mentioned.
Nevertheless, ASAs are expected to experience spatially inhomogeneous changes in
the contribution of extreme precipitation to total precipitation. This difference is also
reflected in the changes in R95p annual days and the percentage of R95p area.
Approximately a 5-day increase under 1.5 °C and an 8-day increase under 2 °C are
expected to appear in HAs. Half of the ASAs locations are expected to experience an
increase and half a decrease in R95p annual days. Likewise, only HAs are expected to
experience large increases in the R95p area fraction.

For the changes in SDII, most HAs will witness 0.4–0.8 mm/day (in 1.5 °C relative to the
historical period) and 0.2–0.4 mm/day (in 2 °C relative to 1.5 °C) increases. North India and
Pakistan are projected to experience decreases, and most ASAs will see SDII increases in
terms of values and percentiles.
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