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ABSTRACT: Drylands play an essential role in Earth’s environment and human systems. Although dryland expansion
has been widely investigated in previous studies, there is a lack of quantitative evidence supporting human-induced
changes in dryland extent. Here, using multiple observational datasets and model simulations from phase 6 of the Coupled
Model Intercomparison Project, we employ both correlation-based and optimal fingerprinting approaches to conduct
quantitative detection and attribution of dryland expansion. Our results show that spatial changes in atmospheric aridity
(i.e., the aridity index defined by the ratio of precipitation to potential evapotranspiration) between the recent period
1990–2014 and the past period 1950–74 are unlikely to have been caused by greenhouse gas (GHG) emissions. However,
it is very likely (at least 95% confidence level) that dryland expansion at the global scale was driven principally by GHG
emissions. Over the period 1950–2014, global drylands expanded by 3.67% according to observations, and the dryland
expansion attributed to GHG emissions is estimated as ∼4.5%. Drylands are projected to continue expanding, and their
populations to increase until global warming reaches ∼3.58C above preindustrial temperature under the middle- and high-
emission scenarios. If warming exceeds ∼3.58C, a reduction in population density would drive a decrease in dryland popu-
lation. Our results for the first time provide quantitative evidence for the dominant effects of GHG emissions on global
dryland expansion, which is helpful for anthropogenic climate change adaptation in drylands.

SIGNIFICANCE STATEMENT: In the past decades, global drylands have been reported to show changes in space
and time, based on atmospheric aridity (i.e., aridity index defined by the ratio of precipitation to potential evapotranspi-
ration). Using two detection and attribution methods, the spatial change patterns of atmospheric aridity between
1990–2014 and 1950–74 are unlikely to be driven by greenhouse gas (GHG) emissions, whereas the temporal expansion
of global drylands (i.e., 3.67% from 1950 to 2014) is principally attributed to GHG emissions (contribution: ∼122%).
Quantitative evidence from the detection and attribution analysis supports the dominant role of greenhouse gas emis-
sions in global dryland expansion, which will increase the population suffering from water shortages under future warm-
ing unless climate adaptation is adopted.
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1. Introduction

About 41% of Earth’s land surface is composed of drylands
(areas suffering from permanent or seasonal water deficiency;

Lian et al. 2021). Drylands are some of the most sensitive
areas to global warming and nurture over 38% of Earth’s
population (Huang et al. 2016; Yao et al. 2020). About half of
dryland residents live under the poverty threshold according
to the United Nations (Reynolds et al. 2007; Lian et al. 2021).
Therefore, the well-being of people, associated ecosystem
services, and societal goods are particularly vulnerable to
anthropogenic warming (Huang et al. 2017). Thus, past and
future changes in drylands under global warming are a growing
cause for concern (Dai 2013; Park et al. 2018; Pokhrel et al.
2021; Vicente-Serrano et al. 2020; Li et al. 2021; Zhang et al. 2017;
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Li et al. 2020; Zhang et al. 2019; Yao et al. 2020). Exploring
the driving effects of anthropogenic climate change on
changes in global dryland extent can greatly enhance our
understanding in dryland evolution under future warming.
Detection and attribution analysis separating the anthropo-
genic climate change signal in global dryland changes will
deepen our overall knowledge of human activities on dry-
land extent and of how that may change with anthropogenic
climate change.

Spatial and temporal changes in dryland extent and inten-
sity (aridification) have been extensively examined. Previ-
ous studies have assessed changes in the spatial patterns of
drylands between the current and future periods (Feng and
Fu 2013; Berg et al. 2017; Cheng and Huang 2016; Cheng
et al. 2015; Schlaepfer et al. 2017; Greve et al. 2014; Burrell
et al. 2020; Gu et al. 2019c; Dai 2013; Pokhrel et al. 2021;
Huang et al. 2016; Park et al. 2018). Feng and Fu (2013) ex-
pected a drier future over most land areas defined by atmo-
spheric aridity. Dai (2013) projected soil moisture deficit of
the top 10-cm layer in North America, South America,
Europe, southern Africa, and Australia. Enhanced soil mois-
ture drying occurred in humid transitional regions and then
expanded to dry transitional regions (Cheng and Huang
2016). Pokhrel et al. (2021) indicated that many global land
areas, especially in the Southern Hemisphere, are likely to
witness a future reduction in terrestrial water storage. How-
ever, global land areas are also projected to experience wet-
ting when using an ecohydrological index (based on surface
soil moisture, transpiration, and leaf area index) as a proxy
for drylands (Berg and McColl 2021). Based on the analysis
from more than 300 combinations of various precipitation,
evapotranspiration, and potential evaporation datasets, Greve
et al. (2014) found that the “dry gets drier, wet gets wetter”
pattern only occurs in 10.8% of global land areas, and the
opposite pattern can be found in 9.5% of global land areas.
Despite these studies, it is still unknown whether spatial
changes in dryland areas can be attributed to human-induced
climate change or natural climate variability.

The results of past and future changes in dryland extent
differ in previous studies using different indices to define dry-
lands from atmospheric, hydrological, agricultural, and eco-
logical viewpoints (Huang et al. 2016; Lian et al. 2021; Dai
2013; Pokhrel et al. 2021; Berg and McColl 2021). Based on
atmospheric aridity indices, dryland expansion is expected
to accelerate, with a 23% increase under a high-emission
scenario (Huang et al. 2016; Feng and Fu 2013). The self-
calibrated Palmer drought severity index shows an 8%
increase of global drought areas from 1950 to 2010 (Dai
2013). Land areas with decreases in terrestrial water storage
and dry-season water availability are also expanding (Padrón
et al. 2020; Pokhrel et al. 2021). In contrast, Berg and McColl
(2021) argued that no expansions in global drylands are pro-
jected under greenhouse warming when using an ecohydrologi-
cal index, which is consistent with greening and enhanced
vegetation activity (He et al. 2019; Fensholt et al. 2012; Zhu
et al. 2016; Piao et al. 2020). Recently, Lian et al. (2021) re-
viewed the characteristics of dryland aridity changes using
atmospheric, hydrological, agricultural, and ecological indices,

and confirmed that dryland areas are projected to increase in
the future except when using the ecology-based index. Never-
theless, current research has not yet provided quantitative
evidence to support human-induced dryland expansion or
quantified the role of different external forcings.

Since both the spatial patterns and extent of dryland areas
are projected to change under future warming, an equally im-
portant factor is the potentially affected dryland population.
Many studies have estimated the exposure of population to
droughts at global and regional scales (Chen et al. 2018; Liu
et al. 2018; AghaKouchak et al. 2021; Kasprzyk et al. 2009),
but few have focused on changes in dryland population
(Koutroulis 2019; Stavi et al. 2021; Huang et al. 2016). For
example, Huang et al. (2016) projected dryland population
growth by 50% in the future under a high-emission sce-
nario. Koutroulis (2019) estimated that 1.9 billion people
could avoid living in drylands if the warming increase is re-
duced from 48 to 1.58C. However, these studies did not sepa-
rate the roles of the spatial evolution of drylands from
alterations in dryland population (see Fig. 1). This separation
can help us take a closer look at the potential effects of dry-
land changes on population and provide decision-makers with
more specific options for adaptation and mitigation.

In this study, following the protocol that is widely used to
define drylands from atmospheric aridity, we employ the arid-
ity index [AI; the ratio of the annual total precipitation
(PRCP) to potential evapotranspiration (PET)] to identify
drylands as the areas with AI # 0.65. Then, we address the
following questions:

• Can spatial patterns of changes in AI be attributed to
anthropogenic climate change?

• Is there quantitative evidence to support human-induced
dryland expansion, and to what extent does anthropogenic
climate change contribute to this expansion?

• What are the separate roles of dryland expansion and pop-
ulation alteration in the changes of residents in drylands?

2. Data

a. Observation-based meteorological data

Long-term monthly precipitation observations are collected
from four sources: the Climatic Research Unit (CRU; Harris
et al. 2020), TerraClimate (Abatzoglou et al. 2018), Princeton
(Sheffield et al. 2006), and the University of Delaware (UD;
Willmott and Matsuura 2018). The CRU and TerraClimate
also provide long-term monthly PET estimations that are cal-
culated by using the Penman–Monteith (PM) equation (Allen
et al. 1998; Ekström et al. 2007; Harris et al. 2020; Abatzoglou
et al. 2018). We use the PM equation (Allen et al. 1998) to es-
timate monthly PET based on the variables in the Princeton
dataset, namely downward shortwave radiation, maximum
temperature, minimum temperature, wind speed, and specific
humidity. Monthly PET is also calculated by using the PM
equation for the University of Delaware dataset (Cook et al.
2014; Zhang et al. 2021; Feng and Fu 2013; Huang et al. 2016)
based on the data (i.e., wind speed, mean temperature,
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specific humidity, net shortwave radiation flux, and net long-
wave radiation flux) from the Global Land Data Assimilation
System (GLDAS; Rodell et al. 2004; Beaudoing and Rodell
2019; Feng and Fu 2013; Song et al. 2020). Information about
these datasets can be found in Table 1. The PET is estimated
by the PM equation (Allen et al. 1998):

PET 5
0:408D 3 R*

n 1 g
900

T 1 273
u2(es 2 ea)

D 1 g(1 1 0:34u2)
, (1)

where T is the air temperature (8C), u2 is the wind speed
(m s21), es 2 ea is the saturation vapor pressure deficit (kPa),
D is the slope of the vapor pressure (kPa 8C21), and g is the

psychrometric constant (kPa 8C21). Also, R*
n is the surface

available energy, which can be calculated in two ways: the net
radiation minus the soil heat flux density (Sheffield et al.
2006; Hu et al. 2021; M. Liu et al. 2021) or net shortwave radi-
ation flux minus net longwave radiation (Song et al. 2020;
Feng and Fu 2013). Due to data availability, the R*

n is calcu-
lated based on the first (second) way in the Princeton (UD
and GLDAS) dataset(s).

Due to the differences in spatial resolution and record length
among the four datasets, we used bilinear interpolation (Gu
et al. 2019a) to regrid these datasets as a common resolution
of 0.58, and extracted data from 1950–2014 as the common
study period. The ensemble mean (OBS-EM) of these four

FIG. 1. Schematic diagram of population changes arising from population density and spatial
extent of drylands between a warm future (i.e., 20-yr) period and the reference period 1961–90,
respectively. (left) The spatial extent of drylands identified during the reference period and a
future warming period of 13.58C under SSP585. The letters are as follows: A indicates the
shared dryland extent between the two periods, A0 (Ai) is the extent in the 1961–90 reference
period (in the future ith warm period), and P0 (Pi) is the population density in the reference
period (in the ith warm period).

TABLE 1. Observation-based datasets used to calculate the aridity index.

Datasets Variables Spatial resolution Temporal resolution Sources

CRU (TS4.04) Precipitation, potential
evapotranspiration

0.58 Monthly, 1901–2019 Harris et al. (2020); https://
data.ceda.ac.uk/badc/cru/data/
cru_ts/

Terra-Climate Precipitation, potential
evapotranspiration

1/248 Monthly, 1958–2015 Abatzoglou et al. (2018);
https://data.nkn.uidaho.edu/
dataset/monthly-climate-
and-climatic-water-balance-
global-terrestrial-surfaces-
1958-2015

Princeton Precipitation, downward
shortwave radiation,
maximum temperature,
minimum temperature, wind
speed, specific humidity

1/48 Daily, 1948–2016 Sheffield et al. (2006); http://
hydrology.princeton.edu

UD & GLDAS Precipitation from UD; wind
speed, mean temperature,
specific humidity, net
shortwave radiation flux,
net longwave radiation flux
from GLDAS

1/28 for UD and 1/48
for GLDAS

Monthly, 1900–2017 for
UD and 1948–2014
for GLDAS

Willmott and Matsuura (2018);
https://doi.org/10.5067/
9SQ1B3ZXP2C5; Rodell
et al. (2004); Beaudoing and
Rodell (2019); https://sedac.
ciesin.columbia.edu/data/
sets/browse
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datasets is calculated for the following detection and attribu-
tion analysis.

b. CMIP6 data

The recently released monthly model simulations from
phase 6 of the Coupled Model Intercomparison Project
(CMIP6) are obtained for the following analyses. The varia-
bles provided by CMIP6 are surface upward latent heat flux,
surface upward sensible heat flux, wind speed, relative humid-
ity, and minimum/maximum near-surface air temperature un-
der difference forcings: natural (NAT) forcing, greenhouse
gases (GHG) forcing, and historical (ALL) forcing (including
NAT and anthropogenic forcings). Most of the models under
these forcings have simulations ending in 2014. The simula-
tions from the PiControl (CTL) experiments (where the
GHG level is set to preindustrial conditions) are also ob-
tained. Results based on the CTL experiments indicate the
impact of natural climate variability because they do not in-
clude any forcing. Information on the models used in this
study can be found in Table 2.

We also obtained projections for 2015–2100 from CMIP6 under
four SSP-RCP (shared socioeconomic pathway–representative
concentration pathway) scenarios, namely, SSP126, SSP245,
SSP370, and SSP585. For example, SSP126 is the combination
of SSP1 and RCP26. RCPs represent the radiative forcing
paths, with the radiative forcing reaching 2.6 W m22 (RCP26),
4.5 W m22 (RCP45), 7.0 W m22 (RCP70), or 8.5 W m22

(RCP85) at the end of the twenty-first century, (Taylor et al.
2012). SSPs represent various global socioeconomic development
scenarios, including sustainability (taking the green road; SSP1),
middle of the road (SSP2), regional rivalry (a rocky road; SSP3),
and fossil-fueled development (taking the highway; SSP5) (Riahi
et al. 2017). Populations are projected to increase around 2050,
2060, and 2070 in the SSP1, SSP5, and SSP2, respectively, and
then decline by 2100, while this increase in population will persist
through 2100 in the SSP3. To ensure the same weight among
these models, only the models with realization “r1i1p1fn” are
used; for more information, refer to Table 3. The PM equation
(Allen et al. 1998; Yang et al. 2019; Scheff and Frierson 2014; Fu
and Feng 2014) is used to estimate the PET based on model simu-
lations. Note that Rn* is calculated by sensible and latent heat in
modeled data (Fu and Feng 2014; Yang et al. 2019; Scheff and
Frierson 2014).

c. Population data

The yearly population data (0.58 resolution) are collected
from the InterSectoral Impact Model Intercomparison Project
(ISIMIP). The ISIMIP provides historical (1861–2005) and
future (2006–2100) population data under the SSP1, SSP2,
SSP3, and SSP5, respectively. The population data are avail-
able at https://data.isimip.org/.

TABLE 2. Model simulations used to calculate the aridity index.
An asterisk (*) indicates that the corresponding model has the data
for a given experiment; a long dash (}) indicates that it does not.

Model name AER GHG NAT ALL
CTL

(Length: yr)

ACCESS-CM2 } } } * 500
ACCESS-ESM1-5 * * * * 900
AWI-CM-1-1-MR } } } } 500
AWI-ESM-1-1-LR } } } * 100
BCC-CSM2-MR } } } * 600
BCC-ESM1 } } } * }

CanESM5 * * * * 1000
CAS-ESM2-0 } } } * 549
CMCC-CM2-SR5 } } } * 500
CMCC-ESM2 } } } * }

CESM2 * * * } }

EC-Earth3-AerChem } } } * 311
EC-Earth3-CC } } } * }

EC-Earth3-LR } } } } 201
EC-Earth3-Veg-LR } } } * 501
EC-Earth3-Veg } } } * 500
EC-Earth3 } } } * 501
FGOALS-g3 * * * * }

FIO-ESM-2-0 } } } * }

GISS-E2-1-G * * * * 851
GISS-E2-1-H } } } * 801
GISS-E2-2-G } } } } 151
HadGEM3-GC31-LL } } } } 500
HadGEM3-GC31-MM } } } } 500
INM-CM4-8 } } } * 531
INM-CM5-0 } } } * 1201
IPSL-CM6A-LR * * * * 2000
MIROC6 * * * } }

MPI-ESM-1-2-HAM } } } * 780
MPI-ESM1-2-HR } } } * 500
MPI-ESM1-2-LR } } } * 1000
MRI-ESM2-0 * * * } }

Total counts 8 8 8 24 15 478

TABLE 3. Model projections used to calculate the aridity index.
An asterisk (*) indicates that the corresponding model has the data
for a given experiment; a long dash (}) indicates that it does not.

Model name SSP126 SSP245 SSP370 SSP585

ACCESS-CM2 * * * *
ACCESS-ESM1-5 * * * *
AWI-CM-1-1-MR * * * *
CanESM5 * * * *
CMCC-CM2-SR5 * * * *
EC-Earth3-AerChem } } * }

EC-Earth3-CC } * } *
EC-Earth3-Veg-LR * * * *
EC-Earth3-Veg * * * *
EC-Earth3 * * * *
FGOALS-g3 * * * *
FIO-ESM-2-0 * * } }

GFDL-ESM4 * * * }

IITM-ESM * } } }

INM-CM4-8 * * * *
INM-CM5-0 * * * *
IPSL-CM6A-LR * * * *
MIROC6 * * * }

MPI-ESM1-2-HR * * * *
MPI-ESM1-2-LR * * * *
MRI-ESM2-0 * * * }

Total models 19 19 18 15
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3. Methods

a. Correlation-based attribution approach

Anthropogenic climate change is mainly driven by anthro-
pogenic aerosol (AER) emissions and GHG. Previous studies
have consistently shown that effects of the AER forcing on
global hydroclimatology were the highest from the 1950s to
the 1980s and the relative role of the GHG forcing has grown
since then (Marvel et al. 2019; Wu et al. 2013; Wilcox et al.
2013; Polson et al. 2014; Skeie et al. 2011; Padrón et al. 2020).
For example, the hydrological cycle was weakened during the
1950s to 1980s because of increased anthropogenic aerosols,
and then shifted to enhancement since the 1980s because of
increased greenhouse gas emissions (Wu et al. 2013; Wilcox
et al. 2013). For changes in global droughts, Marvel et al.
(2019) also found that the anthropogenic aerosol forcing
signal is detectable during 1950–75 while the greenhouse
gas forcing signal is present during 1981–2017. Therefore,
we investigate whether there is an anthropogenic climate
change signal in changes of spatial aridification patterns
between recent (after the 1980s) and past (before the 1980s)
periods. Specifically, we investigate changes in spatial ari-
dification patterns based on the difference in AI between
two 25-yr periods, 1950–74 and 1990–2014 (Padrón et al.
2020):

DAI 5 AIrecent 2 AIpast, (2)

where AIrecent (AIpast) is the mean of AI during the recent
(past) period 1990–2014 (1950–74) in each grid cell. The DAI
is computed in both observations and model simulations under
ALL, GHG, and NAT forcings. The CTL simulations available
from 24 models have a total of 15478 years, and are divided
into 65-yr (the length of the period 1950–2014) nonoverlapping
segments (a total of 226 segments), and the DAI is calculated
in each segment in the same way. We also test the sensitivity of
DAI to selected periods (i.e., 1950–74 and 1985–2009, 1955–79
and 1985–2009, and 1955–79 and 1990–2014).

The attribution of changes in the spatial distribution of DAI
to anthropogenic climate change is assessed by following a
correlation-based attribution approach (Gudmundsson et al.
2017b; Qian and Zhang 2015; Padrón et al. 2020). We esti-
mate the spatial Spearman correlation of DAI between obser-
vations and model simulations to quantify responses of spatial
change to external forcings. The correlations between obser-
vations and CTL simulations depict the distribution of im-
pacts only from natural climate variability. The null hypothesis
is that there is no signal of anthropogenic forcing in the
changes in spatial patterns of AI; that is, these changes are
attributed to natural climate change only. The null hypothe-
sis is rejected (an anthropogenic signal is detectable) if the
spatial correlations between observations and simulations
under ALL/GHG forcing exceed the 95th percentile of corre-
lations between observations and CTL simulations. Further-
more, the presence of an anthropogenic signal is confirmed if
the spatial correlations between observations and simulations
under NAT forcing are below the 95th percentile.

b. The optimal fingerprint method

The spatial extent of global drylands (i.e., areas with AI# 0.65)
is estimated annually based on observations and simulations
under different forcings. The Spearman correlations of dry-
land area extent (time series) between observations and
CTL, ALL, GHG, and NAT simulations are estimated, re-
spectively. Similarly, we first employ the correlation-based
attribution approach to detect whether an anthropogenic
signal is detectable in temporal changes of dryland area ex-
tent (Gudmundsson et al. 2017a; Padrón et al. 2020).

We further employ the optimal fingerprinting method (Gu
et al. 2019b; Allen and Stott 2003; Kong et al. 2020; Allen and
Tett 1999) to quantify the detection and attribution of exter-
nal forcings to changes in observed dryland area. In this
method, observed changes are assumed as the linear sum of
responses to external forcings plus natural climate variability
(Allen and Stott 2003):

y 5 (X 2 a)b 1 �, (3)

where y is the observed time series of dryland area, X is
the simulated time series of dryland area from ALL, GHG,
and/or NAT forcing, a is the sampling uncertainty of X, b is
the scaling factor that is used to scale X and then make X
match the long-term changes of observations, and � is the
natural climate variability estimated from CTL simulations.
The signal of external forcing is detectable if b is significantly
larger than zero. The modeled response is consistent with the
observed change if b is around 1. The estimation of b is ad-
dressed by using the ordinary least squares (OLS) and total
least squares (TLS), respectively. The attribution of the ob-
served change in dryland area to external forcings is quanti-
fied as (Allen and Stott 2003)

Con 5 Slope 3 b, (4)

where slope is the linear trend in the simulated dryland area
under each external forcing, and b is the scale factor of the
corresponding external forcing.

c. Population assessment in drylands

Changes in dryland population under different warming
periods are quantified against the reference period 1961–90:

DP 5
Pw 2 Pr

Pr

3 100%, (5)

where Pw is the average population in drylands during a fu-
ture warming period, and Pr is the average population in dry-
lands during the reference period 1961–90. From 1991 to 2100
in model simulations (i.e., ALL forcing and SSP scenarios),
the warming period is the running 20-yr window, and the
warming level is the average temperature during this window
minus the average temperature during the base period
1861–1990.

The spatial extent of drylands is expected to change be-
tween the future warm period and the historical reference
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period, as is the population density in drylands. Thus, changes
in dryland population can be further decomposed as (see
Fig. 1 as a schematic):

DP 5 (A 1 Ai)Pi 2 (A 1 A0)P0, (6)

where A is the shared dryland area between the two periods,
A0 (Ai) is the area found exclusively in the reference period
1961–90 (in the ith warm period; i.e., a 20-yr window), and
P0 (Pi) is the population density in the reference period (in
the ith warm period). Thus, DP comprises two parts: one from
changes in population density in the shared dryland areas
(i.e., the common extent between past and future periods),
and the other from changes in the spatial extent of drylands.
We then quantify relative changes from both components, as
shown:

DPpop 5
PiA 2 P0A

Pr

3 100%

DParea 5
PiAi 2 P0A0

Pr

3 100%

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where DPpop (DParea) is the relative change from changes in
population density (spatial extent of drylands).

4. Results

a. Detection of anthropogenic climate change in spatial
patterns of change

Figure 2 shows spatial patterns (excluding Antarctica and
Greenland) of changes in AI, PRCP, and PET between the
mean values during 1990–2014 and 1950–74 from multidata
mean observations and multimodel mean simulations under
historical forcings (i.e., ALL, GHG, and NAT). Consistent
spatial patterns can be found when the periods are 1985–2009
and 1950–74 (Fig. S1 in the online supplemental material),
1985–2009 and 1955–79 (Fig. S2), and 1990–2014 and 1955–79
(Fig. S3). Observations indicate the global land surface has
mostly witnessed decreases in AI (62.3% of land grids) during
the recent period relative to during the past period (Fig. 2a).
Areas with decreases in AI are mainly in the East Asia mon-
soon region, Africa, and eastern Australia, where a decreasing
trend in AI during 1948–2005 was also found by Huang et al.
(2016). The observed PRCP shows decreases in only 48% of
land grid cells, which are also mainly located in the East Asia
monsoon region, Africa, and eastern Australia (Fig. 2e), while
increases in observed PET are widespread across the globe
(84% of land grids; Fig. 2i). The prominent increases in PET
are favorable to decreases in atmospheric aridity. However,

FIG. 2. (a)–(d) Spatial patterns of changes in the mean of aridity index (AI), (e)–(h) annual total precipitation (PRCP; mm), and
(i)–(l) annual total potential evapotranspiration (PET; mm) between the two periods (i.e., 1990–2014 and 1950–74, respectively)
from multidata mean observations (OBS-EM) and historical simulations (i.e., ALL, GHG, and NAT forcings, respectively). The
blue curve on the right side of panels indicates zonal average change. The stippling indicates areas where 75% of the models agree
on the sign of the change (observations indicate the agreement of all observed datasets).
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the spatial patterns of changes in observed AI are more
closely controlled by PRCP, as seen by their highly consistent
spatial patterns (i.e., 83.2% of land grids have the same
change direction; Figs. 2a,e). For observed AI and PET, only
34.5% of the total land grids have the same sign (Figs. 2a,i).
Feng and Fu (2013) found that increasing PET dominates the
areas with translation from humid to dry subhumid and from
dry subhumid to semiarid while increasing precipitation plays
a dominant role in the regions with reducing aridity.

There is an agreement in the sign of the changes in PRCP
(PET) between observations and simulations under ALL
forcing; 55.7% (75%) of land areas have the same direction
of change. This agreement in PRCP (PET) is even higher
between observations and GHG simulations, and the corre-
sponding percentage is 56.7% (83.6%). However, simulated
PRCP (PET) that excludes human-induced impacts under NAT
forcing shows much weaker consistency with observations. The
above results imply that anthropogenic climate change is likely
to be the underlying reason for the observed pattern of change
in PRCP and PET. Previous studies have shown that the spa-
tial distribution of long-term changes in precipitation and
evapotranspiration at the global scale is well captured by

model simulations (Min et al. 2011; Madakumbura et al. 2021;
J. Liu et al. 2021).

Nevertheless, the sign of spatial patterns in changes in
observed AI is poorly captured by historical ALL simulations
(Figs. 2a,b). Only 47.2% of land grids show consistent direc-
tions of change between observed and ALL simulated AI; op-
posite directions of change are found in North America,
South America, northern Africa, and the East Asia monsoon
region. The poor consistency of spatial change patterns be-
tween observations and ALL simulations was also found in
previous studies (Huang et al. 2016; Feng and Fu 2013). The
spatial patterns of change are highly similar between ALL-
and GHG-simulated AI (Figs. 2b,c), implying that GHG forc-
ing plays an important role in the changes under ALL forcing
(which includes GHGs and other external forcings). We no-
tice that the increase of observed AI is captured in simula-
tions under NAT forcing, such as North America and South
America (Figs. 2a,d), but not ALL forcing. The possible rea-
sons for the poor ability of models to simulate the spatial pat-
terns of changes in AI are model uncertainties and noises
from natural climate variability (Monerie et al. 2020; Fyfe et al.
2021). As natural climate variability affects both observations

FIG. 3. Correlation-based attribution analyses for changes in spatial patterns of (a) AI,
(b) PRCP, and (c) PET (as illustrated in Fig. 2). The gray bars represent the distribution of
spatial correlations between observations and all 65-yr nonoverlapping segments from CTL
simulations. The orange, red, and blue dots indicate the spatial correlations between observations
and the multimodel mean simulations from ALL, GHG, and NAT forcings, respectively.
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and simulations, the agreement of spatial change patterns be-
tween them could be reduced by climate noise. On the other
hand, the global land is dominated by increases in PRCP and
PET under both ALL and GHG forcings, which could lead to
mixed changes in P/PET (i.e., AI).

To formally detect an anthropogenic signal in the spatial
change patterns, we assess whether the Spearman correlation
of spatial patterns between observations and simulations un-
der external forcings is greater than the correlations obtained
from natural climate variability (Fig. 3). We find that the spa-
tial correlation of PRCP (PET) between the ensemble mean
of multiple observations (OBS-EM) and GHG simulations
(red circle on the far right boxplot) exceeds the 90th (80th)
percentile of correlations between observations and the 226
CTL simulation segments (Figs. 3b,c). This finding suggests
that the GHG signal is detectable in the spatial patterns of
changes in PRCP (PET) at the 90% (80%) confidence level
(although both are lower than 95% confidence level). The
spatial correlation of PRCP (PET) between OBS-EM and
NAT simulations smaller than 80th percentile of correlations
between OBS-EM and CTL simulations further confirms the
impacts of human-induced climate change.

As shown in previous studies, anthropogenic climate
change is detectable in the temporal increases in global pre-
cipitation and evapotranspiration (Wu et al. 2013; J. Liu et al.
2021). Based on the Clausius–Clapeyron relationship, anthro-
pogenic warming is expected to increase atmospheric water
holding capacity, and thus enhance precipitation totals (Donat
et al. 2016; Wu et al. 2013). For global drylands, annual pre-
cipitation totals increase by ∼15% per 18C of global warm-
ing (Donat et al. 2016). Besides the thermodynamic effects
(i.e., changes in atmospheric moisture) of global warming,
warming-driven dynamic effects also work on precipitation
changes (Paik et al. 2020; Pfahl et al. 2017). For example,
Pfahl et al. (2017) indicated that the thermodynamics cause a
consistent increase in precipitation over most global areas,

while dynamics amplify or weaken this increase depending on
regions. Global hydrological cycle is also driven by anthropo-
genic-induced perturbations to the surface energy budget
(Wu et al. 2010, 2013). GHGs can increase net surface radia-
tion by intercepting more outgoing longwave radiation, and
then enhance evapotranspiration (Dai et al. 2018; J. Liu et al.
2021). Rising atmospheric CO2 can reduce stomatal conduc-
tance in plants and lead to a lower transpiration rate, but
simultaneously also increase transpiration by expanding plant
leaf area (Cui et al. 2020; Ukkola et al. 2016; Yang et al.
2019). Our results indicate that it is likely (.80% probability)
that GHG forcing is driving not only the observed increases
but also the spatial changes of PRCP and PET.

Although a detectable GHG signal is found in spatial
changes of PRCP and PET, this signal is not detected in the
observed changes in AI (Fig. 3a). The spatial correlation be-
tween AI observations and GHG simulations is lower than the
80th percentile of correlations from CTL simulations. There is
a very low spatial correlation between AI observations and
simulations under ALL forcing, further confirming the poor
ability of models to capture observed spatial change patterns
(as mentioned above). This weak spatial correlation between
observations and simulations under ALL forcing is also found
in PRCP and PET. Possible reasons are that 1) model uncer-
tainties may cause a disagreement between observations and
simulations (Fyfe et al. 2021; Padrón et al. 2020), 2) the coun-
teracting effect of anthropogenic aerosols and GHG may con-
tribute to a more complex spatial change (Lau et al. 2017;
Touma et al. 2021), and 3) the uncertainties among the four
observation datasets may affect the response of model simula-
tions to observed spatial patterns (Sun et al. 2018). There is
an evident discrepancy in the response of different observa-
tional datasets to external forcings, for example, the GHG sig-
nal is detectable in the spatial changes of AI based on the UD
and GLDAS (TerraClimate) dataset at 80% confidence level
(Fig. 3a).

FIG. 4. Temporal evolution of the global proportion of land areas undergoing aridification [DAI , 0; see Eq. (1)]
based on (a) observations and historical simulations and (b) projections under the four scenarios. Areas with DAI, 0
have drying atmospheric aridity during a running 20-yr window relative to the reference period 1961–90. The purple
ribbon for observations indicates the extent of maximum and minimum values from the four observed datasets.
The colored ribbons for the models indicate the 25th and 75th percentiles of the multimodel simulations.
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Although models have limited ability to simulate re-
gional patterns of change, they do capture the temporal
evolution of global land areas with drying atmospheric
aridity (DAI , 0) during a running 20-yr period relative to
the reference period of 1961–90 (Fig. 4). In recent decades,
observations show a significant increase in the global pro-
portion of land areas with drying atmospheric aridity. The
simulations under ALL forcing barely capture this increas-
ing land area; they underestimate the observed increasing
rate, which the GHG simulations simulate well. When ex-
cluding human-induced forcings (NAT simulations), the
increase in land area with drying atmospheric aridity is not
detected. These results imply that an increasing proportion
of land area is experiencing atmospheric drying, potentially

caused by human-induced climate change. Land areas with dry-
ing atmospheric aridity are projected to continue expanding in
the future under all four scenarios (although SSP126 may see a
decrease in the second half of the twenty-first century).

b. Detection and attribution of temporal changes in
dryland areas

Following the increase in land areas with drying atmo-
spheric aridity in recent decades (Fig. 4a), we then focus on
changes in the extent of dryland areas (i.e., AI# 0.65) in both
observations and simulations (Fig. 5). As shown in previous
studies (Huang et al. 2016; Dai 2013), the extent of drylands
significantly increased at a rate of 5.65% century21 in obser-
vations and 1.59% century21 in simulations under ALL forcing

FIG. 5. Long-term changes in dryland areas in observations and model simulations. (a)–(e) The changes estimated
from observations and model simulations under ALL, GHG, NAT, and CTL forcings, respectively. In (a), the gray
shadow is the spread of maximum and minimum values from the four observed datasets. In (b)–(e), the gray shadow
indicates the 25th and 75th percentiles of multimodel simulations. (f) The colored vertical lines show the trends in
observations and model simulations under external forcings; blue text is the corresponding percentiles in the probabil-
ity density distribution of trends in all 65-yr nonoverlapping segments from CTL simulations (see gray bars).
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during 1950–2014. This increase in dryland extent is more evi-
dent in GHG simulations (i.e., 4.47% century21) than in ALL
simulations. Both NAT and CTL simulations show a slight
decrease in dryland area extent (Figs. 5d,e) and therefore do
not explain the observed dryland expansion. Additionally,
the observed trend and the GHG simulated trend are outside
the range or at the high end (i.e., above the 99th percentile)
of the trend expected from natural climate variability (see
gray bar plots in Fig. 5f), which is quantified from CTL simu-
lations. These results indicate that the GHG emission signal
is strong enough to be detected in the observed increase in
dryland extent.

We first employ the correlation-based attribution approach
(Gudmundsson et al. 2017a; Padrón et al. 2020) to conduct a

quantitative assessment of anthropogenic impacts (Fig. 6).
The Spearman correlations of drylands area time series be-
tween observations and ALL simulations are relatively high,
that is, above the 85th percentile of correlations between ob-
servations and the CTL simulations (for the composite
observations, Princeton, and UD and GLDAS datasets). This
percentile is notably higher (i.e., at least above the 98th per-
centile) for the correlations between observations and GHG
simulations (for the composite observations and all the indi-
vidual datasets), suggesting that there is a high probability
that GHG emissions are driving the observed increase in dry-
land extent. Furthermore, the NAT simulations are weakly
correlated with the observed pattern (i.e., well within the
range spanned by CTL simulations), implying that there is a

FIG. 6. Correlation-based attribution analyses for long-term changes in dryland extent based on (a) CRU,
(b) TerraClimate, (c) Princeton, (d) UD, and (e) multimean observations. The bar plots are the Spearman corre-
lations of dryland area time series between observations and CTL simulations during the period 1950–2014. The
colored vertical lines show correlations between observations and model simulations under external forcings;
blue texts are the corresponding percentiles in the probability density distribution of correlations between
observations and CTL simulations.
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low probability that the NAT forcing is driving the observed
pattern.

In addition to the correlation analysis, we employ the opti-
mal fingerprinting method to further quantify the contribu-
tions of external forcings to the long-term changes in
observed dryland extent (Fig. 7). We first regressed the obser-
vations on the individual external forcings (i.e., ALL, GHG,
and NAT), respectively, and conducted one-signal detection
and attribution (Figs. 7a,d). Both the OLS and TLS estima-
tions show that the scaling factors of ALL and GHG forcings
are significantly above zero at the 95% confidence level, while
this is not the case for the NAT scaling factor. This is consis-
tent with the results from the correlation-based detection, and
strengthens the evidence that the signal of GHG emissions is
detectable in dryland expansion. Both the scaling factors of
ALL and GHG forcings are larger than 1 (i.e., around 2), in-
dicating that model simulations underestimate the amplitude
of observed dryland expansion.

The long-term changes in dryland extent show a very strong
linear trend in both observations and simulations under ALL
and GHG forcings (Figs. 5a–c). If this strong linear trend is
distinguishable above the climate noise, this indicates that the
one-signal analysis could be dominated by one forcing (Chen
and Sun 2017; Gu et al. 2019b). Therefore, we conducted a
two-signal analysis by regressing the observations on both
ALL and NAT (GHG and NAT) forcings, simultaneously
(Kong et al. 2020). As the observed patterns could be affected
by several forcings, the two-signal analysis can also tell us

whether the responses of ALL and GHG forcings can be sep-
arated from the NAT forcing (Figs. 7b,d). We find that the
GHG scaling factor is significantly above zero in both OLS
and TLS estimations, but the NAT factor is not. This result in-
dicates that the response of GHG forcing is distinct from the
NAT forcing and confirms that the result of one-signal analy-
sis is robust.

We further estimate the contributions of individual external
forcings to the observed change in dryland extent (Figs. 7c,f).
Over the period 1950–2014, observed dryland areas have
expanded by 3.67%. The ALL forcing (including both an-
thropogenic forcings and NAT forcing) has driven dryland ex-
pansion by 2.36% (1.81%) since 1950, according to the TLS
(OLS) estimation. In contrast, the dryland expansion attrib-
uted to GHG forcing is 4.63% (4.52%) since 1950, which is
comparable to the amplitude of change in observations.

c. Changes in dryland population

Since GHG emissions drive both global warming and dry-
land expansion, we assess the evolution of dryland extent and
population with future warming levels (Fig. 8). All four future
emission scenarios project increasing dryland extent with
global warming (Figs. 8a,b). The dryland areas are projected
to increase by 1%, 2%, and 4.8% relative to the reference
period of 1961–90, with warming levels of 1.58, 28, and
3.58C, relative to preindustrial conditions, respectively. This
projection is consistent with previous studies (Huang et al. 2016;
Koutroulis 2019). Huang et al. (2016) projected 23% and 11%

FIG. 7. Detection and attribution of long-term changes in dryland area by using the optimal fingerprint method.
The scaling factors estimated from (a),(b) OLS and (d),(e) TLS methods, respectively. The scaling factors based on
(a),(d) one-signal and (b),(e) two-signal analysis, and the error bars indicate the 5th and 95th percentile values of the cor-
responding scaling factor. (c),(f) The corresponding attribution results, except for the purple bar plot, which is the trend
in multidata mean observations. The error bars in (c) and (f) indicate the 25%–75% interval of the bar plot values.
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increases in dryland areas by the end of the twenty-first century
under RCP8.5 and RCP4.5 relative to the reference period
of 1961–90. Koutroulis (2019) used the outputs of a high-
resolution model (i.e., HadGEM3A with a spatial resolution
of ∼60 km) and projected the areal coverage of drylands
would increase by 7% by the end of twenty-first century under
RCP8.5.

Both studies (Huang et al. 2016; Koutroulis 2019) also pro-
jected increases in the population of drylands during this contin-
ued expansion. Koutroulis (2019) indicated that an additional 1.9
billion people would live in dryland areas with an increase in
warming from 1.58 to 48C. However, our projections show that
the increases in dryland population persist among all warming
levels only under the SSP370 scenario (Figs. 8c,d). The popula-
tion is projected to increase to 12.6 billion by the end of the
twenty-first century in SSP370, which is much higher than other
SSPs (i.e., 7 billion for SSP1, 9.4 billion for SSP2, and 7 billion
for SSP5; Samir and Lutz 2017; Riahi et al. 2017). Under
SSP370, the persistently growing population and dryland expan-
sion lead to continuous increases in relative change in dryland
population. For SSP245 and SSP585, we observe a shift in dry-
land population from increases to decreases when the warming
level reaches above ∼3.58C. These changes in dryland popula-
tion are also found in China where the population exposure to
drought is projected to increase up to the 2040s and then de-
crease until the end of twenty-first century under the four fu-
ture scenarios, with the exception of SSP370 (Chen et al. 2021).

We hence investigate whether population density and/or
the spatial extent of drylands dominate this future shift in dry-
land population (Fig. 9). The growth in dryland extent is pro-
jected to contribute to the increases in dryland population
under all four warming scenarios (Figs. 9b,d). Projected in-
creases caused by spatial extent under SSP370, for instance,
are 5.1%, 6.4%, and 14.1% at warming levels of 1.58, 28, and
3.58C, respectively. In comparison with dryland expansion,
changes in population density play an even greater role in dry-
land population growth (Figs. 9a,c). For example, the popula-
tion increases induced by population density under SSP370
are 69%, 106%, and 160% at warming levels of 1.58, 28, and
3.58C, respectively. However, this persistent increase in popu-
lation induced by changes in population density is found only
under SSP370 (Figs. 9a,c). For SSP245 and SSP585, the trajec-
tory is projected to start decreasing beyond a warming level of
∼3.58C, due to the reduction in dryland population density.
These results suggest that warming above ∼3.58C under SSP245
and SSP585 could make the dryland areas uninhabitable by
humans, and thus lead to a reduction in dryland population.

5. Discussion and conclusions

In this study, we conduct a formal detection and attribution
analysis of the observed spatiotemporal changes in global dry-
land extent by comparing multiple observed and simulated
datasets using a correlation-related approach and optimal

FIG. 8. Projected changes in (a),(b) dryland area and (c),(d) population during future warming periods relative to
the reference period of 1961–90 under the four future emission scenarios. The light-colored curves are the projections
from individual models and the corresponding dark-colored curves are the projections from multimodel mean.
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fingerprint method. Correlation-related attribution analysis
shows it is unlikely that the spatial changes of atmospheric
aridity (i.e., AI) between the recent period (1990–2014) and
the past period (1950–74) are caused by GHG emissions.
However, the growing fraction of land areas with increasing
atmospheric aridity (i.e., DAI, 0) is captured by model simu-
lations only when the models are forced with GHG emissions,
implying that anthropogenic climate change may be driving
dryland expansion. Formal detection and attribution analysis
further support that a GHG signal is detectable (at 95% confi-
dence level) in the observed expansion of global drylands
over the past decades. Specifically, the observed extent of
global drylands increased by 3.67% from 1950 to 2014, and a
growth of ∼4.5% can be attributed to GHG emissions. Detec-
tion and attribution analysis quantitatively supports that an-
thropogenic climate change is the dominant contributor to
global dryland expansion, which will increase population in
drylands. In comparison with the increase driven by dryland
expansion, changes in dryland population density play a more
important role. A reduction in dryland population density
is expected to drive a subsequent decrease in dryland popula-
tion if future warming exceeds ∼3.58C under the SSP245 and
SSP585 scenarios.

As mentioned in the introduction, the spatial patterns of
change and dryland expansion differ when using other indices
to define drylands. Besides AI, Lian et al. (2021) also used
vapor pressure deficit (VPD), soil moisture, runoff, and gross

primary production (GPP) to define drylands and found that
VPD- and soil moisture-based drylands show obvious expan-
sion in the future while runoff-based (GPP-based) dryland
extent remains stable (significantly decreases). The consistent
obvious dryland expansion between AI and VPD and soil
moisture implies that the anthropogenic climate change signal
may be also detectable in dryland expansion identified based
on VPD and soil moisture. Our previous study has detected
the influence of human activities on the past decrease in
global soil moisture (Gu et al. 2019b). However, no expansion
is projected in runoff- and GPP-based global drylands, indi-
cating that greenhouse warming signals may not be detectable
in observed dryland expansion. This is because the effects of
increasing atmospheric CO2 on runoff and vegetation are still
ambiguous and debatable (Zhang et al. 2021; Lian et al. 2021;
Berg and McColl 2021; Yang et al. 2019). Here, we focus on
atmospheric aridity and use the aridity index to define dry-
lands. Other indices based on agricultural, hydrological, and
ecological attributes are beyond the scope of our study.

The robustness of our results is mainly affected by uncertain-
ties in observations and model simulations. Spatial changes in
the aridity index, precipitation, and potential evapotranspira-
tion exhibit clear differences among the four observed datasets
(Fig. S5). The Spearman correlation of spatial change between
each pair of the four datasets is within 0.46–0.73 for the aridity
index, 0.48–0.87 for precipitation, and 0.11–0.62 for potential
evapotranspiration (Fig. S5). Observational uncertainties do

FIG. 9. Projected change in dryland population arising from changes in (a),(c) population density and (b),(d) spatial
extent of drylands during a future warming period relative to the reference period 1961–90 under the four future
emission scenarios. The light-colored curves are the projections from individual models and the corresponding
dark-colored curves are the projections from the multimodel mean.
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affect the detection of a GHG emissions signal. For example,
for the aridity index, a GHG signal is not detectable in the mul-
timean observed changes, but is detected (.90% probability)
in the UD and GLDAS dataset (Fig. 3a). In contrast, for pre-
cipitation, the GHG signal is detectable (.90% probability)
in the multimean observed change, but not in the UD and
GLDAS dataset (Fig. 3b). The inconsistencies among these ob-
served precipitation datasets are described in Sun et al. (2018).

We also note the inconsistency of spatial changes in the
aridity index between observations and model simulations
(see Figs. 2a,b). The poor ability of models to capture spatial
changes in the aridity index is also found in Huang et al.
(2016). Alongside the changes in AI-based drylands, soil or-
ganic carbon storage and emission are also changed; however,
these carbon cycle processes are not included in some climate
models, which hinders models from accurately reproducing
these spatial patterns of change (Huang et al. 2016). The mod-
els also underestimate the amplitude of the observed dryland
expansion (see the scaling factor of ALL forcing, which ex-
ceeds 1 in Figs. 7a and 7d). We use a correlation-based ap-
proach and anomalies to reduce the potential impact of biases
in the absolute magnitude of simulations on our detection and
attribution results (Gudmundsson et al. 2017b; Qian and
Zhang 2015), and relative changes in comparison with the ref-
erence period to reduce biases in the dryland population
estimates.

Human-induced dryland expansion is accompanied by se-
rious land degradation (Reynolds et al. 2007; Burrell et al.
2020). The change of above 5 million km2 of drylands to-
ward desertification was driven by anthropogenic climate
change during 1982–2015 (Burrell et al. 2020). Dryland ex-
pansion and degradation mean less water availability, and
population growth increase water demand. The interaction
between less water availability and growing water use
would put great pressure on ecosystems and human settle-
ments in drylands. Therefore, adaptation measures are
needed to mitigate the adverse effects of water shortages,
such as demand management, water markets, water-saving
techniques, and limiting carbon emissions (AghaKouchak
et al. 2021). Policymakers and societies should prioritize water
demands and uses to minimize the impacts on ecosystems and
human settlements. Researchers could focus on the integra-
tion of water supplies, needs, and management under climate
change, which is important to sustain the development of hu-
mans and ecosystems in drylands (AghaKouchak et al. 2021).
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