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A B S T R A C T   

PM2.5 (fine particulate matter with aerodynamics diameter <2.5 μm) is the most important component of air 
pollutants, and has a significant impact on the atmospheric environment and human health. Using satellite 
remote sensing aerosol optical depth (AOD) to explore the hourly ground PM2.5 distribution is very helpful for 
PM2.5 pollution control. In this study, Himawari-8 AOD, meteorological factors, geographic information, and a 
new deep forest model were used to construct an AOD-PM2.5 estimation model in China. Hourly cross-validation 
results indicated that estimated PM2.5 values were consistent with the site observation values, with an R2 range of 
0.82–0.91 and root mean square error (RMSE) of 8.79–14.72 μg/m3, among which the model performance 
reached the optimum value between 13:00 and 15:00 Beijing time (R2 > 0.9). Analysis of the correlation co-
efficient between important features and PM2.5 showed that the model performance was related to AOD and 
affected by meteorological factors, particularly the boundary layer height. Deep forest can detect diurnal vari-
ations in pollutant concentrations, which were higher in the morning, peaked at 10:00–11:00, and then began to 
decline. High-resolution PM2.5 concentrations derived from the deep forest model revealed that some cities in 
China are seriously polluted, such as Xi ‘an, Wuhan, and Chengdu. Our model can also capture the direction of 
PM2.5, which conforms to the wind field. The results indicated that due to the combined effect of wind and 
mountains, some areas in China experience PM2.5 pollution accumulation during spring and winter. We need to 
be vigilant because these areas with high PM2.5 concentrations typically occur near cities.   

1. Introduction 

In the past two decades, China has experienced rapid economic 
development. However, due to natural changes and human activities, 
China has gradually become one of the countries with severe PM2.5 
pollution (Sun et al., 2016; Zhang et al., 2017; Liu et al., 2019b; Li et al., 
2021). As a staple air pollutant, PM2.5 poses a huge challenge to China’s 
environmental protection authorities in controlling air pollution (Cheng 
et al., 2013; Zhao et al., 2013; Andersson et al., 2015; Gao et al., 2016; 
Budnik et al., 2019). Studies have shown that high PM2.5 concentrations 
are more likely to cause haze weather (Huang et al., 2012b; Ji et al., 
2012) and impact visibility (Fu et al., 2008; Xiao et al., 2011), while 
long-term exposure under PM2.5 will seriously threaten human life 
(Huang et al., 2012a; Dimitriou et al., 2013; Xu et al., 2013). PM2.5, 
which contains harmful substances (Kassomenos et al., 2014; Zhang 

et al., 2019a), can enter the human body through respiration, leading to 
cardiovascular disease (Cohen et al., 2017), respiratory disease (Guar-
nieri and Balmes, 2014), and even lung cancer (Liu et al., 2016). To deal 
with pernicious PM2.5, various countries worldwide have carried out 
extensive monitoring. Since 2013, China has successively established 
more than 2000 environmental monitoring stations, which can provide 
real-time PM2.5. These observation results also provide validation data 
sets for many studies on PM2.5 concentration estimation studies. 

Many studies have shown that there is a strong correlation between 
AOD and PM2.5 (Guo et al., 2009; Xu et al., 2021), and a statistical 
relationship between them can be constructed (Ma et al., 2016; Yang 
et al., 2019). By combining satellite remote sensing AOD with ground 
observation PM2.5 and using statistical methods, PM2.5 with high spatial 
coverage can be obtained (Xiao et al., 2017). Hence, a series of PM2.5 
estimation methods based on satellite remote sensing AOD have 
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emerged (Zhang et al., 2021). In earlier studies, Hu et al. (2014) applied 
multi-angle implementation of atmospheric correction (MAIAC) AOD to 
estimate PM2.5 concentration in the southeastern United States with a 
linear mixed effects model, and the results reflected the seasonal PM2.5 
in this region (coefficient of determination, R2 = 0.67). Subsequently, 
Ma et al. (2014) used the moderate-resolution imaging spectroradi-
ometer (MODIS) AOD and a geographically weighted regression model 
to estimate PM2.5 in China (R2 = 0.64), and the results showed that the 
serious PM2.5 concentration was in the North China Plain, Tarim Basin, 
and Sichuan Basin. 

Although the linear regression AOD–PM2.5 model can reflect the 
variation in PM2.5, its accuracy needs to be further improved. Mean-
while, advanced mathematical statistical methods represented by 
random forest (RF) and neural networks have been used to estimate 
PM2.5 (Hu et al., 2017). Stafoggia et al. (2019) estimated PM2.5 in Italy 
(R2 = 0.86) using MAIAC AOD and meteorological factors based on RF, 
and the results showed that the Po River Plain area was seriously 
polluted during 2013–2015. Wei et al. (2019) used MAIAC AOD and RF 
to bulid an AOD–PM2.5 model in China, and the cross-validation R2 and 
root mean square error (RMSE) were 0.85 and 15.57 μg/m3, respec-
tively. The AOD–PM2.5 model based on neural networks also exhibited 
good performance. Wang and Sun (2019) used AOD, meteorological 
factors, and gaseous pollutants as input factors to construct a PM2.5 
estimation model for the Beijing–Tianjin–Hebei region through deep 
neural networks, and R2 = 0.87 and RMSE = 27.11 μg/m3. Li et al. 
(2017b) established an AOD–PM2.5 model suitable for China using a 
neural network with an R2 of 0.88, and the model has excellent per-
formance and is significant for the prevention and control of air pollu-
tion. However, “black box” neural networks (Ul-Saufie et al., 2013) are 
insufficient for exploring the feature contribution. 

PM2.5 concentration has temporal and spatial variations (Zhang 
et al., 2020a). PM2.5 with high temporal and spatial resolution, is 
required, which is typically not met by polar orbiting satellites, and 
geostationary meteorological satellites have been gradually applied to 
estimate PM2.5 (Zhang et al., 2019b). Himawari-8 is a geostationary 
meteorological satellite that is active in the Asia-Pacific region, equip-
ped with a high-resolution advanced Himawari imager (AHI) (Wu et al., 
2020). Based on Himawari-8 AOD data, many studies have established a 
good hourly AOD–PM2.5 model in China with an R2 of 0.81–0.85 (Chen 
et al., 2019; Song et al., 2021; Xiong et al., 2021). These AOD–PM2.5 
models can provide the spatial distribution of hourly PM2.5 and help to 
continuously monitor pollutant evolution. 

Based on the above research, we introduced a deep forest (DF) 
machine-learning model, which has a nonlinear structure similar to a 
neural network and can provide feature importance. The DF avoids the 
low interpretability of neural networks (Yan et al., 2021), and combines 
the tree model to increase the model depth. In this study, we designed a 
multi-layer DF model, combined with the input Himawari-8 AOD, 
meteorological factors, and geographic information to generate hourly 
PM2.5 with a spatial resolution of 5 km over China in 2018. Furthermore, 
the study analyzed the PM2.5 distribution at the city level and the wind 
field impact on pollutants. 

2. Datasets and methods introduction 

2.1. Datasets 

2.1.1. Ground PM2.5 observations and Himawari-8 AOD 
The China Environmental Monitoring Center (CEMC) provides 

hourly ground PM2.5 data, which are calibrated and controlled accord-
ing to the National Ambient air quality standards GB 3095–2012 (China, 
2012) formulated by the Ministry of Ecology and Environment of the 
People’s Republic of China in 2012. During the study period, there were 
1605 total environmental monitoring stations. The study period was 
from January 1, 2018 to December 31, 2018, and the daily data retrieval 
time was 09:00–16:00 Beijing time (01:00–8:00 UTC). Six regions were 

used to analyze the regional differences of the AOD–PM2.5 model, 
including Guanzhong Plain (GZP), Beijing–Tianjin–Hebei region (BTH), 
Sichuan Basin (SCB), Yangtze River Delta region (YRD), Pearl River 
Delta region (PRD), and Central China (CC), as shown in Figure S1. 

Himawari-8 was launched in 2014 and officially began providing 
data in 2015. Its onboard AHI observes the Earth every 10 min to pro-
vide detailed aerosol information in the Asia-Pacific region (Yoshida 
et al., 2018). In this study, we used Himawari-8 L3 with 500 nm AOD per 
hour and a spatial resolution of 5 km. Yang et al. (2020) compared 
Himawari-8 AOD with AERONET (Aerosol Robotic Network) AOD (R2 of 
0.72), but the Himawari-8 AOD value was slightly lower (Gao et al., 
2021). As shown in Figure S1, due to the observation range and bright 
surface, effective data cannot be obtained in Xinjiang, Tibet, and west-
ern Sichuan in China. 

2.1.2. Meteorological factors and geographic information 
The construction of the AOD–PM2.5 model should consider meteo-

rological factors and geographical information, which can affect the 
formation and aggregation of pollutants (Liu et al., 2019a; Pan et al., 
2019; Chen et al., 2020; Chen et al., 2021c; Ma et al., 2021) and alter the 
correlation between AOD and PM2.5 (Pinto et al., 2004; Duvall et al., 
2012; Guo et al., 2017). Meteorological factors were obtained from 
ERA5 reanalysis data derived from the European Centre for 
Medium-Range Weather Forecasts (ECMWF), including boundary layer 
height (BLH), 2-m temperature (TM), relative humidity (RH), 10-m U 
and V wind components (U10 and V10), surface pressure (SP), and total 
precipitation (RAIN). The ERA5 datasets had an hourly temporal reso-
lution and a spatial resolution of 0.25◦ × 0.25◦ or 0.1◦ × 0.1◦ (as table S1 
showed). Land cover types were represented by high and low vegetation 
indices (LH and LL) from ERA5. The ground elevation data (HEIGHT) 
was SRTM-3 data jointly measured by the National Aeronautics and 
Space Administration (NASA) and National Imagery and Mapping 
Agency (NIMA) of the Department of Defense, with a spatial resolution 
of 90 m. The population density (PD) was derived from the 2015 United 
Nations adjusted PD data provided by NASA’s Socioeconomic Data and 
Applications Center (SEDAC), with a spatial resolution of approximately 
0.04◦ × 0.04◦. 

2.2. Methods 

2.2.1. Data matching 
First, the spatial resolution of meteorological factors and geographic 

information was adjusted to 0.05◦ × 0.05◦ (Himawari-8 AOD data grid 
resolution) by bilinear interpolation. The range of longitude and latitude 
is 80◦E− 136◦E, 16◦N–54◦N, and the number of grids is 1121*761 =
853081. Second, based on a grid of 0.05◦ × 0.05◦, the hourly PM2.5 
recorded by environmental monitoring stations in China (80◦E− 136◦E, 
16◦N–54◦N) were matched with AOD data. If there is one station in a 
grid, the observed value of the station is the corresponding grid value. If 
there were two or more stations in a grid, the average PM2.5 at these 
stations is the corresponding grid value. 

There were 307,502 samples after data matching, of which the 
sample sizes were 114,331, 43,752, 86,997, and 62,422 in spring 
(March, April and May), summer (June, July and August), autumn 
(September, October and November), and winter (December, January 
and February), respectively. In summer, many clouds affect satellite 
observations, resulting in a small sample size. 

2.2.2. Deep forest 
Deep Forest is a novel machine-learning model proposed by Zhou 

and Feng (2017). The DF replaces the neurons in the neural network 
with ensemble learners, and one-way propagation between forest layers 
(hidden layer) means that the next layer receives the output results of 
the previous layer and continues to transmit to the next layer. A light 
gradient boosting machine (LightGBM) was added after the forest layer 
(Zeng et al., 2021) to process the output information of the last forest 
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layer. Ensemble learners in DFs, including extreme trees (ET) (Chen 
et al., 2021) and RF (Song et al., 2021), enable the DF to output feature 
importance (Chen et al., 2022) to help improve the model interpret-
ability. As a deep learning model, the advantage of DF is that it can 
obtain the importance of model features. For DF model, the parameters 
to be optimized mainly include the number of forest layers, the number 
of base learners and the number of decision trees in the base learners. In 
this study, an AOD–PM2.5 DF model with three hidden forest layers was 
developed, and each layer contained 12 ensemble learners (six ETs and 
six RFs), and each base learner contains 600 decision trees. The work-
flow and the structure of the DF model were shown in Figure S2. 

The AOD–PM2.5 DF model can be expressed as 

PM2.5 (i,j) = f (AODi,j + BLHi,j + RHi,j + TMi,j + LLi,j + LHi,j + SPi,j + RAINi,j+

U10 i,j + V10 i,j + PDi,j + HEIGHTi,j + LON LATj + TIMEi)

(1) 

PM2.5 (i,j) represents the PM2.5 concentration observation value of 
grid point j at time i, and f represents the DF model. The independent 
variables include AOD (aerosol optical depth), BLH (boundary layer 
height), RH (relative humidity), TM (2 m temperature), LL (low vege-
tation indices), LH (high vegetation indices), SP (surface pressure), 
RAIN (total precipitation), U10 (10 m wind U component), V10 (10 m 
wind V component), PD (population density), HEIGHT (altitude), 
LON_LAT (spatial variables, formulas (2)), and TIME (temporal vari-
ables, formulas (3)) (see Table S1 for details). 

LON LAT=
lon − lat
lon + lat

(2)  

TIME=
seconds

3600
+ 8 (3) 

In Formula (2), lon and lat represent the longitude and latitude of 
any grid, respectively, and in Formula (3), seconds represents the total 
number of seconds between the observation time and 00:00 on January 
1, 1900. The spatial variable (LON_ LAT) in this study can represent the 
relative position of a point on the whole grid by using longitude and 

latitude combination method. Because the time resolution of Himawari- 
8 data is hourly, a time stamp accurate to hour was used to represent the 
temporal feature (TIME) (Wei et al., 2021; Chen et al., 2022). The 
“TIME” used in our study was a combination of time information 
(including information about year, month, day and hour), which was 
similar to the time variable in ERA5 data. 

We used a ten-fold cross validation to test the model performance 
(Rodriguez et al., 2010). The indicators used to describe the model 
performance include coefficient of determination (R2), root mean square 
error (RMSE), mean absolute error (MAE). Firstly, the model perfor-
mance (R2, MAE, RMSE) of all samples were calculated. Then, the 
multiple values of model performance (season, region, hour, etc.) were 
the average values of all samples by season, region, or hour. Equations 
and definitions of these indicators can be found in the articles (Chen 
et al., 2021; Song et al., 2021). 

3. Model cross validation results 

3.1. Temporal scale validation results 

The cross-validation results from 09:00 to 16:00 (Beijing time) in 
2018 are shown in Fig. 1. The training data was divided into 10 parts, of 
which nine parts were used for training the model and one for valida-
tion, and the process was repeated ten times. The sampled-based 
(random sampling of all samples) cross-validation R2 was 0.82–0.91, 
fitting slope was 0.82–0.93, RMSE was 8.79 μg/m3–14.72 μg/m3, and 
MAE was 6.01 μg/m3–9.19 μg/m3, and the hourly PM2.5 derived from 
the DF model was consistent with ground PM2.5 observations. Overall, 
R2 was above 0.85 for most of the day, while R2 was higher than 0.9 
between 13:00 and 15:00, which indicated that the AOD–PM2.5 model 
based on DF performed well. Due to changes in meteorological condi-
tions and AOD data quality, model performance varies within a day (Ge 
et al., 2018; Qin et al., 2018; Zang et al., 2019). Meanwhile, we also 
performed site-based (random sampling of all sites) validation to test the 
model performance. As shown in Figure S3, the site-based cross--
validation R2 range was 0.75–0.83 and RMSE (MAE) was 11.14 

Fig. 1. Hourly model cross-validation results based on sample (the dark dotted line represents the expected error lines, the light dashed line represents the 1:1 line, 
and the solid red line represents the linear regression fitting line; N indicates the sample size obtained per hour; EE presents the expected error; when the ratio of the 
estimated value to the true value is between 1.15 and 0.85, the error between them is the expected error(Chu et al., 2002; Yang et al., 2020).). (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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μg/m3–18.27 μg/m3 (7.67 μg/m3–11.46 μg/m3). The results indicated 
that the DF model can accurately estimate PM2.5 in areas without 
environmental monitoring stations, but the site-based validation results 
are lower than the sample-based validation results (Shen and Li, 2019). 
In addition, The Table S2 shown some results of estimating PM2.5 using 
different machine learning models based on himawari-8 AOD. Accord-
ing to the comparison results, it was found that the R2 of PM2.5 estimated 
by the DF model was about 0.03–0.06 higher than other models. The DF 
model can effectively improve the estimated PM2.5 accuracy using 
Himawari-8 AOD data. 

There were also significant differences in model performance on the 
seasonal scale, and the results are shown in Fig. 2 (A–D). The R2 values 
were 0.87, 0.9, and 0.88, and RMSE (MAE) values were 11.6 μg/m3 (7.7 
μg/m3), 11.06 μg/m3 (7.36 μg/m3), and 15.42 μg/m3 (9.21 μg/m3), in 

spring, autumn, and winter models, respectively. Due to the small 
sample size, the model performed poorly in summer, with R2 = 0.76 
(RMSE = 8.6 μg/m3, MAE = 6.08 μg/m3). Burning fossil fuels for heating 
(Xiao et al., 2015) resulted in a higher RMSE in winter than in the other 
three seasons, and lower RMSE in summer due to reduced emissions and 
increased precipitation (Witkowska and Lewandowska, 2016). The 
estimated and measured values of PM2.5 were validated on different 
time scales (Fig. 2, E–H). Daily, monthly, seasonal, and annual R2 values 
were 0.9, 0.91, 0.93, and 0.93, RMSE (MAE) values were 10.54 μg/m3, 
6.43 μg/m3, 4.96 μg/m3, and 3.55 μg/m3 (6.63 μg/m3, 3.77 μg/m3, 2.96 
μg/m3, and 1.97 μg/m3), and the fitting slopes were 0.88, 0.89, 0.91, 
and 0.91, respectively. The results indicated that estimated PM2.5 
derived from DF can provide reliable data for monitoring the spatial 
variation and temporal trend of PM2.5 pollution in China. 

Fig. 2. Same as Fig. 1, but for seasonal and different time scales.  

Fig. 3. Spatial distribution of model evaluation indicators (A: R2, B: RMSE, C: MAE, D: PM2.5 annual mean.).  
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3.2. Spatial scale validation results 

As shown in Fig. 3, the model performance exhibited spatial differ-
ences. The results indicated that R2 was generally higher, and the RMSE 
and MAE were lower in the dense station areas. We found that the re-
gions with good model performance were consistent with those regions 
with high PM2.5 values in China, and those regions with poor model 
performance were primarily distributed in western and northeastern 
China. This may be related to the better data quality from heavily 
polluted areas. The statistical results showed that approximately 70%, 
75%, and 76% of grid points had R2 > 0.6, RMSE <13 μg/m3, and MAE 
<9 μg/m3, respectively. As shown in Figure S4, in the Bei-
jing–Tianjin–Hebei region, Central China, Yangtze River Delta, and 
Pearl River Delta, the model performance was excellent, with R2 was 
0.9, 0.91, 0.89, and 0.89, respectively; and R2 in the Sichuan Basin and 
Guanzhong Plain was lower, with 0.84 and 0.88, respectively. 

3.3. Influence of important features on model performance 

Feature importance represents the total gains of splits that use the 
feature during model construction (Liu et al., 2021; Wei et al., 2021). As 
shown in Figure S5, AOD made the highest contribution to the DF model, 
with a feature importance of 18%. Several meteorological factors also 
had significant effects on the model, and the feature importance of BLH, 
TM, and RH were 16%, 8%, and 6%, respectively. The contributions of 
factors were analyzed in different regions and seasons (Figure S6). For 
different seasons, when both the AOD and BLH feature importance 
scores were higher than 0.1, the model performance is better. However, 
in summer, the feature importance of AOD is as high as 0.26, but the 
feature importance of BLH is very low, and the model performance is 
poor. On the other hand, in addition to AOD and BLH, RH and TM 
contributions should also be considered for different regions. Therefore, 
in different seasons and regions, features with higher feature importance 
are more likely to determine the performance of AOD-PM2.5 model. In 
general, AOD, time, BLH, RH and TM show higher feature importance in 

regions and seasons with better model performance. As shown in 
Figure S7, when adding features to the model in descending order of 
importance values (Figure S7 (A)), R2 first rose rapidly, reaching about 
0.8 when the fifth feature was added, and then grew slowly. Similarly, 
when adding features to the model in ascending order (Figure S7 (B)), R2 

increased slowly at first, and did not begin to increase rapidly until the 
sixth feature was added. 

To discuss the influence of important features on model perfor-
mance, we analyzed the correlation between AOD, BLH, TM, RH, and 
PM2.5 in different seasons and regions, and the results are shown in Fig. 4 
and Figure S8. The seasonal correlation between AOD and PM2.5 was 
higher in spring, summer, and winter, and lower in autumn. However, 
the correlation between meteorological factors and PM2.5 was higher in 
autumn and winter, followed by spring, and was lowest in summer. 
Combined with R2 and the correlation coefficient, we found that R2 is 
related to the correlation between meteorological factors and PM2.5; the 
two values have similar variations. The results indicate that meteoro-
logical factors affect the model performance in different seasons. The 
correlation results between meteorological features and PM2.5 in 
different regions, were similar. For example, the correlation between 
AOD and PM2.5 in Beijing–Tianjin–Hebei and Central China was lower 
than that in the Sichuan Basin, but the correlation between meteoro-
logical factors and PM2.5 was higher than that in Sichuan Basin, and the 
model R2 values in these two regions were higher than those in the 
Sichuan Basin. Thus, factors with high feature importance had a sig-
nificant influence on the model performance, and the correlation be-
tween these factors and PM2.5 had a substantial impact on the model 
performance. 

To further explore the relationship between model performance and 
important features, R2 and RMSE scatter diagrams with important fea-
tures were drawn, and the results are shown in Figure S9. low R2 values 
may occur near the extreme values of AOD and meteorological factor 
values. When AOD values were large, RMSE had both high and low 
values. RMSE changed little with the increase of relative humidity. 
RMSE decreased with the increase of BLH and first increased and then 

Fig. 4. Correlation between AOD, BLH, TM, and RH and PM2.5, (A) different seasons, (B) different areas. The color and number indicate the correlation coefficient. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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decreased with the increase of TM. The influence of inversion factors on 
PM2.5 can explain these phenomena (Gupta et al., 2006; Li et al., 2016; 
Han et al., 2018; Lv et al., 2019; Le et al., 2020). These results indicated 
that the model was affected by the numerical size of the estimated 
factor. 

4. Spatial distribution of PM2.5 

4.1. Temporal variation in PM2.5 

Input the hourly independent variables into the model to calculate 
the hourly PM2.5 concentration data. Then calculated the annual 
average of hourly PM2.5 data from 09:00 to 16:00 (Beijing time). Finally, 
the diurnal variation of PM2.5 from 09:00 to 16:00 in 2018 was shown in 
Fig. 5. The concentration of PM2.5 reached its peak (33 μg/m3) at 
10:00–11:00, and then decreased significantly (28 μg/m3) from 

15:00–16:00. There was serious pollution in the Beijing-Tianjin-Hebei 
region, and the daily concentration range of PM2.5 was 34.67 μg/ 
m3–53.10 μg/m3, with a maximum of 132.67 μg/m3. Heavily polluted 
areas in southern China included the Sichuan Basin and the Pearl River 
Delta, where PM2.5 concentrations exceeded 60 μg/m3. The pollution 
was not serious in Inner Mongolia, Qinghai, and northeastern China, and 
the daily maximum value of PM2.5 was less than 40 μg/m3. Due to the 
bright surface and cloud cover, effective data could not be obtained from 
China’s Tibetan Plateau. 

Figure S10 used the same calculation method, seasonal average value 
is obtained from the hourly PM2.5 data. The average concentration of 
PM2.5 in China was 32.61 μg/m3, 24.29 μg/m3, 28.72 μg/m3, and 42.18 
μg/m3, during spring, summer, autumn, and winter, respectively. The 
PM2.5 concentration distribution indicated that the Bei-
jing–Tianjin–Hebei region, central China, the Yangtze River Delta, and 
the Sichuan Basin are seriously polluted, particularly in winter. These 

Fig. 5. Diurnal variation in PM2.5 concentration in China. A-H represents the PM2.5 concentrations between 09:00–16:00 Beijing time.  

Fig. 6. Distribution of PM2.5 concentration in the six urban agglomerations in China. Black dots represent cities, and some big cities are shown in red. Each region 
name was displayed on the submap title. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 7. Distribution of PM2.5 and wind field. Black dots represent cities, and arrows represent wind direction. Each region name was displayed on the submap title. A: 
Beijing-Tianjin-Hebei Region; B: Guanzhong Plain; C: Central China; D: Sichuan Basin; E: Yangtze River Delta; F: Pearl River Delta. Subscripts 1, 2, 3 and 4 represent 
spring, summer, autumn, and winter, respectively. The length of the arrows represents the wind speed. 
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areas have a large population and burn a large amount of fossil fuels for 
heating in winter, resulting in a surge in PM2.5 (Zhang et al., 2020b). 
PM2.5 pollution is also very serious in spring, but the area with high 
PM2.5 concentration primarily occurs in North China, which is related to 
the long-range dust transport caused by spring dust storm weather (Liu 
et al., 2020b). Due to lower emissions and higher precipitation in 
summer and autumn, and the elimination of PM2.5 in these two seasons, 
PM2.5 pollution is low (Yan et al., 2018). 

4.2. Distribution of city-level PM2.5 

The study used AOD with a resolution of 5 km to estimate PM2.5, 
which can reflect the concentration distribution of PM2.5 on an urban 
spatial scale. Fig. 6 shows the average PM2.5 concentrations in six urban 
agglomerations in China. The results indicate that PM2.5 pollution was 
severe near some cities, such as Xi ‘an, Chengdu, and Wuhan, where the 
annual average PM2.5 concentration reached 60 μg/m3. The PM2.5 
concentration in Beijing, Guangzhou, and Shenzhen was approximately 
40 μg/m3. Shanghai, China’s economic center, was not seriously 
polluted, with an average annual PM2.5 of less than 40 μg/m3. Generally, 
PM2.5 estimated by the Himawari-8 AOD and DF model can reflect the 
pollution status of county-level administrative units in China, and is 
relatively consistent with large local emission sources (Li et al., 2017a; 
Liu et al., 2020a). 

4.3. Relationship between PM2.5 distribution and wind field 

The wind field is conducive for pollutant diffusion (Wu et al., 2021). 
Fig. 7 shows the seasonal distribution of PM2.5 and wind field in the six 
urban agglomerations. The results indicate that the pollutant diffusion 
direction was consistent with the wind field direction. The pollutants in 
the Guanzhong Plain diffused from east to west along the wind direction 
and accumulated at approximately 34◦ N and 108◦ E, forming a highly 
polluted area. In spring and summer, southeast winds prevailed in the 
Beijing–Tianjin–Hebei region, and the barrier formed by the Yanshan 
Mountains created a PM2.5 high-value area in northwestern Beijing. 
However, in autumn and winter, the prevailing wind in the region was 
northwesterly, and the pollutants transferred to the southeast. More-
over, the wind speed was higher in winter, and the PM2.5 concentration 
was lower than that in autumn. In winter, the north wind induced the 
pollutants in the central region to spread to the south, causing serious 
pollution. In autumn, pollutants also moved southward, but the pollu-
tion was not severe. In spring and summer, the PM2.5 concentration was 
low, and the pollutants moved westward with the wind field. The annual 
wind field in the northern Sichuan Basin was from the northeast, 
blocked by mountains, and turned to the northwest. The pollutants at 
the basin edge were distributed along the wind direction, and some 
pollutants were transported to the center of the basin. The diffusion of 
pollutants in the Yangtze River Delta was also obvious. Southeast wind 
prevailed in spring and summer, and the pollutants diffused to the 
northwest, while northeast winds prevailed in autumn and winter, and 
the pollutants diffused to the southwest. Blocked by mountains, serious 
pollution occurred near 32◦ N and 117◦ E in winter. The pollutants in the 
Pearl River Delta were concentrated in Guangzhou, and the pollutants 
spread to the northwest and southwest in spring and winter, respec-
tively. These results indicate that PM2.5 derived from the Himawari-8 
AOD and DF model can reflect the pollution conditions well. The coor-
dination of the wind field and terrain can also indicate the diffusion 
direction of pollutants, which can provide a scientific basis for local 
pollution control. 

5. Conclusions 

Understanding the temporal and spatial distribution of PM2.5 is of 
great significance for pollution control. This study used a DF model, 
combined with Himawari-8 AOD, meteorological factors, and 

geographic information to estimate PM2.5 in China in 2018. The main 
results indicate the following: 

(1) The DF model can effectively capture the hourly PM2.5 concen-
tration near the ground, with a sample-based cross-validation R2 

range of 0.82–0.91. The estimated PM2.5 was consistent with the 
observed PM2.5, with RMSE ranging from 8.79 μg/m3–14.72 μg/ 
m3. The R2 of PM2.5 estimated by the DF model was about 
0.03–0.06 higher than other models.  

(2) Factors with high feature importance had a significant influence 
on the model performance. Correlation analysis indicated that 
model performance was related to the correlation between the 
estimated factors and PM2.5. The model R2 varied significantly 
with each factor value, but the model performance is typically 
poor under extreme meteorological conditions.  

(3) PM2.5 concentration shows obvious diurnal variation, which 
peaked (33 μg/m3) at 10:00–11:00, and then dropped to 28 μg/ 
m3 at 15:00–16:00. The model can also capture the urban-scale 
PM2.5 concentration distribution, and the pollutants are primar-
ily distributed near cities. 

There were some pollutant accumulation areas in China affected by 
terrain and wind, which should be prioritized when formulating pollu-
tion prevention and control measures. In the future, we could combine 
the estimation of vertical PM2.5 (Chen et al., 2021) with this study to 
construct the three-dimensional distribution of PM2.5, which will be 
more conducive to understand the evolution of pollutants. 
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