协同中心英文站
Chinese | Lzu Home

2021年6月30日星期三

Yongkun XIE


BFAA

Yongkun Xie, male, July 1990, PhD, research scientist

Email: xieyk@lzu.edu.cn

Education

2012.09-2017.06  Lanzhou University, Climatology, Doctor

2015.09-2016.08  Princeton University, Atmospheric Science, Visiting Student

2008.09-2012.06  Lanzhou University, Atmospheric Science, Bachelor

Work Experiences

2020.09-present   Lanzhou University,Research scientist

2017.07-2020.09  Institute of Atmospheric Physics/Chinese Academy of Sciences,Postdoctoral Researcher

Professional Experience

Journal Reviewer:Environmental Research Letters、Journal of Geophysical Research: Atmospheres、SCIENCE CHINA Earth Sciences、Atmospheric Research、International Journal of Climatology、Environmental Research Communications

Honors

Excellent Ph.D. thesis in Gansu province in 2017

Research interests

Climate dynamics and climate change: Global climatic effects of the Tibetan Plateau and potential vorticity dynamics, etc.

Other personal webpages

Elsevier Scopus: https://www.scopus.com/authid/detail.uri?authorId=55913917200

Web of Science: https://www.webofscience.com/wos/author/record/B-1774-2013

Research Gate: https://www.researchgate.net/profile/Yongkun-Xie-2

Publications

1. Su Z, Xie Y*, Huang J, et al. (2024). Impact of the Tibetan Plateau on global high-frequency temperature variability. Journal of Climate.

2. Nie H, Xie Y*, Zhao M, et al. (2024). Future trends in the vertical structure of Arctic warming and moistening in different emission scenarios. Atmospheric Research, 301: 107271.

3. Wu G, Liu Y, Mao J, He B, Bao Q, Xie Y, et al. (2024). Potential Vorticity Source, Potential Vorticity Circulation, and Their Weather and Climate Significances. Chinese Journal of Atmospheric Sciences, 48(1): 8−25. (in Chinese)

4. Zhou C, Yang X, Liu Y, Zhu Q, Xie Y, et al. (2024). Terrain effects of the Tibetan Plateau on dust aerosol distribution over the Tarim Basin, China. Atmospheric Research, 298: 107143.

5. Xie Y, Huang J, Wu G, et al. (2023). Oceanic repeaters boost the global climatic impact of the Tibetan Plateau. Science Bulletin, 68(19): 2225–2235.

6. Xie Y, Wu G, Liu Y, et al. (2023). A potential vorticity budget view of the atmospheric circulation climatology over the Tibetan Plateau. International Journal of Climatology, 43: 2031–2049.

7. Xie Y, Huang J, Wu G, et al. (2023). Potential vorticity dynamics explain how extratropical oceans and the Arctic modulate wintertime land-temperature variations. Earth's Future, 11: e2022EF003275.

8. Xie Y, Huang J, Wu G, et al. (2023). Enhanced Asian warming increases Arctic amplification. Environmental Research Letters, 18: 034041.

9. Huang J, Zhou X, Wu G, Xu X, Zhao Q, Liu Y, Duan A, Xie Y, et al. (2023). Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau. Reviews of Geophysics, 61: e2022RG000771.

10. Huang J, Xie Y. (2023). “Warm Arctic-cold Eurasia” mode at subseasonal time scale. Chinese Science Bulletin, 68(14): 1721–1722. (in Chinese)

11. Tan Z, Liu Y, Shao T, Luo R, Luo M, Xie Y. (2023) Association between Tibetan heat sources and heat waves in China. Journal of Climate, 36: 7905–7924.

12. Gao Z, Guan X, He B, Zhao L, Xie Y, et al. (2023). Impacts of the Tibetan Plateau on aridity change over the Northern Hemisphere. Atmospheric Research, 281: 106470.

13. Wang G, He Y, Zhang B, Wang X, Cheng S, Xie Y, et al. (2023). Historical evaluation and projection of precipitation phase changes in the cold season over the Tibetan Plateau based on CMIP6 multimodels. Atmospheric Research, 281: 106494.

14. Yang Y, Liu Y, Hu Z, Yu H, Li J, Xie Y, et al. (2023). Impact of the leading atmospheric wave train over Eurasia on the climate variability over the Tibetan Plateau during early spring. Climate Dynamics, 60: 3885–3900.

15. Xie Y, Nie H, He Y. (2022). Extratropical climate change during periods before and after an Arctic ice-free summer. Earth's Future, 10: e2022EF002881.

16. Xie Y, Wu G, Liu Y, et al. (2022). A dynamic and thermodynamic coupling view of the linkages between Eurasian cooling and Arctic warming. Climate Dynamics, 58: 2725–2744.

17. Wang G, He Y, Huang J, Guan X, Wang X, Hu H, Wang S, Xie Y. (2022). The influence of precipitation phase changes on the recharge process of terrestrial water storage in the cold season over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 127: e2021JD035824.

18. Sheng C, Wu G, Tang Y, He B, Xie Y, et al. (2021). Characteristics of the potential vorticity and its budget in the surface layer over the Tibetan Plateau. International Journal of Climatology, 41: 439–455.

19. Xie Y, Wu G, Liu Y, et al. (2020) Eurasian cooling linked with Arctic warming: Insights from PV dynamics. Journal of Climate, 33: 2627–2644.

20. Huang M, Li J, Zeng G, Xie Y. (2020). Regional characteristics of cloud radiative effects before and after the South China sea summer monsoon onset. Journal of Meteorological Research, 34: 1167–1182.

21. Xie Y, Huang J, Ming Y. (2019). Robust regional warming amplifications directly following the anthropogenic emission. Earth's Future, 7, 363–369.

22. Luo W, Guan X, Xie Y, et al. (2019). The key role of decadal modulated oscillation in recent cold phase. International Journal of Climatology, 39: 5761–5770.

23. He Y, Huang J, Li D, Xie Y, et al. (2018). Comparison of the effect of land-sea thermal contrast on interdecadal variations in winter and summer blockings. Climate Dynamics, 51: 1275–1294.

24. Xie Y, Huang J, Liu Y. (2017). From accelerated warming to warming hiatus in China. International Journal of Climatology, 37: 1758–1773.

25. Huang J, Xie Y, Guan X, et al. (2017). The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dynamics, 48: 429–446.

26. Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li Z, Zhang L, Liu Y, Yu H, He Y, Xie Y, et al. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55: 719–778.

27. Ma J, Guan X, Guo R, Gan Z, Xie Y. (2017). Mechanism of non-appearance of hiatus in Tibetan Plateau. Scientific Reports, 7: 4421.

28. Zhang Y, Guan X, Yu H, Xie Y, et al. (2017). Contributions of radiative factors to enhanced dryland warming over East Asia. Journal of Geophysical Research: Atmospheres, 122: 7723–7736.

29. Xie Y, Liu Y, Huang J. (2016). Overestimated Arctic warming and underestimated Eurasia mid-latitude warming in CMIP5 simulations. International Journal of Climatology, 36: 4475–4487.

30. Guan X, Huang J, Zhang Y, Xie Y, et al. (2016). The relationship between anthropogenic dust and population over global semi-arid regions. Atmospheric Chemistry and Physics, 16: 5159–5169.

31. Huang J, Ji M, Xie Y, et al. (2016). Global semi-arid climate change over last 60 years. Climate Dynamics, 46: 1131–1150.

32. Ji M, Huang J, Xie Y, et al. (2015). Comparison of dryland climate change in observations and CMIP5 simulations. Advances in Atmospheric Sciences, 32: 1565–1574.

33. Liu Y, Sato Y, Jia R, Xie Y, et al. (2015). Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics, 15: 12581–12594.

34. Xie Y, Liu Y, Huang J. (2014). The influence of the autumn Arctic sea ice on winter air temperature in China. Acta Meteorologica Sinica, 72: 703–710. (in Chinese)

35. Bi J, Shi J, Xie Y, et al. (2014). Dust aerosol characteristics and shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012. Journal of the Meteorological Society of Japan. Ser. II, 92: 33–56.

36. Liu Y, Jia R, Dai T, Xie Y, et al. (2014). A review of aerosol optical properties and radiative effects. Journal of Meteorological Research, 28: 1003–1028.

37. Xie Y, Liu Y, Huang J, et al. (2013). Impact of the Ice-albedo Feedback on Meridional Temperature Gradient of Northern Hemisphere. Advances in Earth Science, 28: 1276–1282. (in Chinese)

38. Liu Y, Shi G, Xie Y. (2013). Impact of dust aerosol on glacial-interglacial climate. Advances in Atmospheric Sciences, 30: 1725–1731.