首页
水土流失防治与水资源安全
研究内容:阐明复杂侵蚀条件下水土流失过程、机制及相关灾害成灾过程,提出水土流失防治、矿山环境保护对策和修复措施;深刻认识水土流失严重区生态退化驱动机制和植被演替规律;研发修复关键技术和建植模式,提出控制水土流失和农牧结合型植被恢复和重建的技术体系;探究流域水循环与水资源演变规律、构建旱区水资源可持续利用模式,从不同角度破解旱区水资源供需矛盾与区域可持续发展难题;揭示我国西部冰冻圈过程及变化机理,评估冰冻圈变化的水文、气候和生态效应;建立脆弱性与适应的理论和方法,提出适应对策。以水土资源高效利用与生态友好为核心,创建黄土高原地区农草畜一体化发展新模式,推动旱地农业可持续发展。
目前已取得的主要进展:①基于物理基础的WEPP模型,模拟了陇西黄土高原罗裕沟流域土壤侵蚀的时空格局,探讨了不同因子的参数赋值方法及其对模拟结果的影响;且基于流体力学原理提出了适合本区域的降雨侵蚀力指标——降水动能,证明了降雨侵蚀力是有效的土壤侵蚀指标,并发现降雨动能是本区域土壤侵蚀的基本驱动因子;构建了基于GIS 多信息协同的黄土重大灾害潜在隐患的超前判识及危险性判识方法和模型;建立了白龙江流域滑坡泥石流成灾阈值指标体系,并集成了国内外现有技术对典型重大滑坡泥石流灾害防治工程与修复技术进行综合试验示范,为我国地质灾害防灾减灾提供成套技术支撑;②建立了白龙江流域滑坡泥石流成灾早期识别和预警体系以及成灾阈值指标体系,集成了国内外现有技术对典型重大滑坡泥石流灾害防治工程与修复技术进行综合试验示范,提供了我国地质灾害防灾减灾的成套技术支撑;③针对水土流失严重区构建了小流域生态修复技术体系;研发了旱区农业节水技术、农业生物节水与非充分灌溉技术、雨水收集、处理与高效利用技术、污水处理与资源化技术;揭示了干旱区山地-绿洲-荒漠系统的水循环机理,并研发了拥有自主知识产权的水循环模型、生态水文模型流域水资源决策系统;初步建立了半干旱区草地退化的评价标准;④开展了退化生态系统诊断、监测、预测技术研究,为受损生态系统修复过程的监测和效应评价提供技术支撑,以及灾区土地整治关键技术、复垦模式研究与生态系统风险管理;⑤提出了评估土壤污染程度及其质量的评价体系;探索并初步集成了退化生态系统土壤修复技术体系,构建了该地区小流域生态修复技术体系;⑥提出了旱作农业理论体系,并累积推广示范了旱作农业集成技术推广6263.8万亩,增产粮食683.2万吨;⑦筛选提出生态修复植物30余种;建成强重力侵蚀区生态修复试验示范区3处,营造示范林草植被1700亩,提出试验植被恢复模式10余个;针对西部黄土区建设有3个水土流失预警示范基地,3个野外基地及系列野外观测、示范场地,112个野外观测点。
代表性文章:
1. Liu, X., X. Li, R. Guo, Y. Kuzyakov, and F. Li*, 2015: The effect of plastic mulch on the fate of urea-N in rain-fed maize production in a semiarid environment as assessed by N-15-labeling. European Journal of Agronomy, 70:71-77.
2. 2. Eldoma, I. M., M. Li, F. Zhang, and F. Li*, 2016: Alternate or equal ridge-furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China Field Crops Research, 191:131-138.
3. Wang, Y., X. Li, J. Zhu, C. Fan, X. Kong, N. C. Turner, K. H. M. Siddique, F. Li*, 2016: Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 220:160-169.
4. Yuan, Z., K. Yu, X. Guan, C. Fang, M. Li, X. Shi, F. Li*, 2016: Medicago sativa improves soil carbon sequestration following revegetation of degraded arable land in a semi-arid environment on the. Loess Plateau, China. Agriculture Ecosystems & Environment, 232:93-100.
5. Li, Z., X. Lai, Q. Yang, et al., 2017: In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Research, doi:10.1016/j.fcr.2017.08.021.
6. Li, Z., Q. Zhang, Q. Yang, et al., 2017: Yield, water productivity and economic return of dryland wheat in the Loess Plateau in response to conservation tillage practices. The Journal of Agricultural Science, 155: 1272-1286.
7. Zhang, Q., F. Miao, Z. Wang, et al., 2017: Effects of Long-Term Fertilization Management Practices on Soil Microbial Biomass in China’s Cropland: A Meta-Analysis. Agronomy Journal, 109(4): 1183-1195.
8. Xue, R., Y. Shen, P. Marschner, 2017: Soil water content during and after plant growth influence nutrient availability and microbial biomass. Journal of soil science and plant nutrition, 17(3): 702-715.
9. Xiao, X., T. Zhang*, X. Zhong*, W. Shao, and X. Li, 2018: Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sensing of Environment, 210, 48-64, doi: 10.1016/j.rse.2018.03.008.
10. Tian, J., B. Zhang*, C. He*, and L. Yang, 2017: Variability in soil hydraulic conductivity and soil hydrological response under different land covers in the mountainous area of the Heihe River watershed, northwest China. Land Degradation & Development, 28(4), 1437-1449, doi:10.1002/ldr.2665.