English | 兰大首页

2021年6月30日星期三

首页

寒旱区生态系统修复与生物多样性保护


研究内容:揭示寒旱极端环境条件下生物适应的生物学机制,挖掘、利用特色抗逆基因资源;系统监测寒旱区典型生态系统生物多样性、群落结构动态与土-生-气物质能量循环,探究多样性维持机理,揭示群落构建和生态系统功能形成机制;阐明寒旱区退化草地和湿地恢复对多样性、生产力和水源涵养能力的影响机理,集成优化符合区域特征的退化草地和湿地修复技术体系与模式,建立对寒旱区典型生态系统水源涵养能力、生物多样性、生产力等生态功能与服务价值的科学评价体系,提出维系区域生态安全的关键因素及保护策略的优化方案。为国家生态文明建设和区域发展提供政策咨询。

目前已取得的主要进展①查清了我国冰川分布现状、系统分析了高寒地区冰川、冻土、积雪对草地水源涵养能力的影响过程,量化了退化湿地修复对高寒草甸持水能力的影响;②集成了退化湿地系统修复技术和提高水源涵养和湿地承载力的技术体系,提出了高寒地区水资源安全应对策略,明确了高寒草甸适宜封育的年限,并建立了高寒退化草地恢复示范区;③开展了高寒地区生物多样性调查,收集了优异种质资源,选育出抗寒牧草新品种箭筈豌豆,修订了多种牧草种子生产技术规范;挖掘了动植物适应高寒生态系统低温、低氧逆境胁迫的关键基因;④建立了基于CVOR为核心的草地健康评价指标体系,研发了甘肃牧区草畜平衡数字化管理决策支持系统,阐明了草地在国家食物和生态安全中的作用。⑤获得高寒地区生态建设种质资源20多种,完成高寒植被建植与管理技术体系10多个;建成高寒生态修复试验示范区20处,示范面积10万亩;针对高寒生态系统新建立野外观测与实验基地10个。

代表性文章:

1. Hu, C., Y. Zhu, Y. Cui, K. Cheng, W. Liang, Z. Wei, M. Zhu, H. Yin, L. Zeng, Y. Xiao, M. Lv, J. Yi, S. Hou, K. He, J. Li, and X. Gou*, 2018: A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants, 4, 205–211, DOI: 10.1038/s41477-018-0123-z.

2. 2. Qiu, Q., L. Wang, K. Wang, Y. Yang, T. Ma, Z. Wang, X. Zhang, Z. Ni, F. Hou, R. Long, R. Abbott, J. Lenstra, and J. Liu*, 2015: Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Communications, 6, 10283, DOI: 10.1038/ncomms10283.

3. Ma, T., J. Wang, G. Zhou, et al. and J. Liu*, 2013: Genomic insights into salt adaptation in a desert poplarNature Communications, 4:2797, DOI: 10.1038/ ncomms3797.

4. Qiu, Q., G. Zhang, T. Ma, et al., 2012: The yak genome and adaptation to life at high altitude. Nature Genetics, 44, 946-949, DOI: 10.1038/ng.2343.

5. Deng, J., J. Ran, Z. Wang, Z. Fan, G. Wang, M. Ji, J. Liu, Y. Wang, J. Q. Liu, and J. H., Brown, 2012: Models and tests of optimal density and maximal yield for crop plants. Proc Natl Acad Sci U.S.A., 109: 15823–15828, doi: 10.1073/pnas.1210955109.

6. Deng, J., W. Zuo, Z. Wang, Z. Fan, M. Ji, G. Wang, J. Ran, C. Zhao, J. Liu, K. J. Niklas, S. T. Hammond, and J. H. Brown, 2012: Insights into plant size-density relationships from models and agricultural crops. Proc Natl Acad Sci U.S.A., 109: 8600-8605, DOI: 10.1073/pnas.1205663109.

7. Zhang, X., Z. Nan*, C. Li, and K. Gao, 2014: Cytotoxic Effect of Ergot Alkaloids in Achnatherum inebrians Infected by the Neotyphodium gansuense Endophyte. J. Agric. Food Chem., 62 (30), 7419–7422, DOI: 10.1021/jf502264j.

8. Jian, S.*, C. Zhao, S. Fang, K. Yu, 2015: Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 206, 85-96, DOI: 10.1016/j.agrformet.2015.03.009.

9. Song, Q., Z. Nan*, K. Gao, H. Song, P. Tian, X. Zhang, C. Li, W. Xu, and X. Li, 2015: Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass. J. Agric. Food Chem., 63 (40), 8787–8792, DOI: 10.1021/acs.jafc.5b04260.

10. Song, M., Q. Chai, X. Li, X. Yao, C. Li*, M. J. Christensen, and Z. Nan, 2015: An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant and Soil, 387(1-2), 153-165.