
学术主页(动态更新):https://yongkunxie.github.io
谢永坤,男,1990年7月生,博士,青年研究员
邮箱:xieyk@lzu.edu.cn
研究方向
气候动力学和气候变化:特别关注青藏高原的全球气候效应
教育经历
2012.09-2017.06 兰州大学,气候学,博士
2015.09-2016.08 普林斯顿大学,大气科学,联合培养
2008.09-2012.06 兰州大学,大气科学,学士
工作经历
2020.09-今 兰州大学,青年研究员
2017.07-2020.09 中科院大气物理研究所,博士后
学术兼职
期刊审稿人: Nature Communications, Nature Water, Journal of Climate, Communications Earth & Environment, Environmental Research Letters, Journal of Geophysical Research: Atmosphere, Atmospheric Research, International Journal of Climatology, Advances in Climate Change Research, Science China Earth Sciences, Environmental Research Communications, Atmosphere, Meteorology, Earth, Sustainability, Urban Science, International Journal of Environmental Research and Public Health, Discover Applied Sciences, Journal of Atmospheric and Solar-Terrestrial Physics, Scientific Reports, The Innovation Geoscience
编辑: The Innovation Geoscience(Youth Editor)
奖励和荣誉
Springer Nature Reviewing Editor(10/2025)
2024年度中国海洋与湖沼十大科技进展(5/2025)
IOP Trusted Reviewer(3/2024)
甘肃省优秀学位论文(7/2017)
教学经历
兰州大学
青藏高原气象学 春/2022、春/2024、春/2025
气候与气候系统 秋/2024、秋/2025
地球系统科学概论 秋/2024、秋/2025
当前指导学生
硕士在读:
米佳芹 (兰州大学)
鲍忠瑞 (兰州大学)
赵敏 (兰州大学, 国奖获得者)
已毕业学生
硕士生:
苏子繁 (兰州大学, 2025年毕业, 国奖获得者,复旦大学博士在读)
雷楠 (兰州大学, 2024年毕业, 兰州大学博士在读)
聂寒彬 (兰州大学, 2024年毕业, 中国商飞)
学术论文
1. Bao Z, Xie Y*, Shi J, et al. (2026) egional disparities in extreme precipitation trends across East Asia: Observation-constrained projection and attribution. Advances in Climate Change Research, https://doi.org/10.1016/j.accre.2025.12.008.
2. Xie Y, Huang J, Wu G, et al. (2025) Changing Northern Hemisphere weather linked to warming amplification in High Mountain Asia. Communications Earth & Environment, 6, 932.
3. Zhao M, Xie Y*, Shi J, et al. (2025) Reversed future drying-wetting precipitation patterns over the northwestern and southeastern East Asia driven by reduced aerosol emissions. Geophysical Research Letters, 52, e2024GL114527.
4. Lei N, Guan X, Xie Y, et al. (2025) Decadal oceanic variability amplified recent heatwave in the Northern Hemisphere. npj Climate and Atmospheric Science, 292.
5. Fan X, Huang J, Xie Y, et al. (2025) External and internal controls on decadal precipitation variability over North America. Climate Dynamics,63, 429.
6. Lu F, Yu H, Hu Z, Xie Y, et al. (2025) Effects of soil moisture in northern Tibetan Plateau on summer precipitation in Northwest China. Journal of Geophysical Research: Atmospheres, 130, e2025JD043690.
7. Zhang B, He Y, Wang Z, Huang B, Xie Y, et al. (2025) Disagreement in detected heatwave trends resulting from diagnostic methods. Geophysical Research Letters, 52, e2024GL114398.
8. Su Z, Xie Y*, Huang J, et al. (2024) Impact of the Tibetan Plateau on Global High-Frequency Temperature Variability. Journal of Climate, 37, 4347–4365.
9. Lei N, Xie Y*, Bao Z, et al. (2024) Decadal heatwave fluctuations in China caused by the Indian and Atlantic Oceans. Environmental Research Letters, 19, 074063.
10. Nie H, Xie Y*, Zhao M, et al. (2024) Future trends in the vertical structure of Arctic warming and moistening in different emission scenarios. Atmospheric Research, 301: 107271.
11. 吴国雄, 刘屹岷, 毛江玉, 何编, 包庆, 谢永坤, 等. (2024) 位涡源汇和位涡环流及其天气气候意义. 大气科学, 48(1): 8−25.
12. Zhou C, Yang X, Liu Y, Zhu Q, Xie Y, et al. (2024) Terrain effects of the Tibetan Plateau on dust aerosol distribution over the Tarim Basin, China. Atmospheric Research, 298: 107143.
13. Liu Y, Huang J, Tan Z, Zhou C, Li D, Xie Y. (2024) Compound events of heatwave and dust storm in the Taklamakan Desert. Science China Earth Sciences, 67, 2073–2083.
14. Li C, Huang J, Liu X, Ding L, He Y, Xie Y. (2024) The ocean losing its breath under the heatwaves. Nature Communications, 15, 6840.
15. Ge J, Li W, Huang J, Mu Q, Li Q, Zhao Q, Su J, Xie Y, et al. (2024) Dust accelerates the life cycle of high clouds unveiled through strongly‐Constrained meteorology. Geophysical Research Letters, 51, e2024GL109998.
16. 景治坤, 黄建平, 刘玉芝, 谢永坤. (2024). 沙尘气溶胶加热对深积云对流系统的影响. 兰州大学学报(自然科学版), 60(3), 296−303.
17. Xie Y, Huang J, Wu G, et al. (2023) Oceanic repeaters boost the global climatic impact of the Tibetan Plateau. Science Bulletin, 68(19), 2225–2235.
18. Xie Y, Wu G, Liu Y, et al. (2023) A potential vorticity budget view of the atmospheric circulation climatology over the Tibetan Plateau. International Journal of Climatology, 43, 2031–2049.
19. Xie Y, Huang J, Wu G, et al. (2023) Potential vorticity dynamics explain how extratropical oceans and the Arctic modulate wintertime land-temperature variations. Earth's Future, 11, e2022EF003275.
20. Xie Y, Huang J, Wu G, et al. (2023) Enhanced Asian warming increases Arctic amplification. Environmental Research Letters, 18, 034041.
21. Huang J, Zhou X, Wu G, Xu X, Zhao Q, Liu Y, Duan A, Xie Y, et al. (2023) Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau. Reviews of Geophysics, 61, e2022RG000771.
22. 黄建平, 谢永坤. (2023) 次季节尺度上的“暖北极-冷欧亚”模态. 科学通报, 68(14), 1721–1722.
23. Tan Z, Liu Y, Shao T, Luo R, Luo M, Xie Y. (2023) Association between Tibetan heat sources and heat waves in China. Journal of Climate, 36, 7905–7924.
24. Gao Z, Guan X, He B, Zhao L, Xie Y, et al. (2023) Impacts of the Tibetan Plateau on aridity change over the Northern Hemisphere. Atmospheric Research, 281, 106470.
25. Wang G, He Y, Zhang B, Wang X, Cheng S, Xie Y, et al. (2023) Historical evaluation and projection of precipitation phase changes in the cold season over the Tibetan Plateau based on CMIP6 multimodels. Atmospheric Research, 281, 106494.
26. Yang Y, Liu Y, Hu Z, Yu H, Li J, Xie Y, et al. (2023) Impact of the leading atmospheric wave train over Eurasia on the climate variability over the Tibetan Plateau during early spring. Climate Dynamics, 60, 3885–3900.
27. Xie Y, Nie H, He Y. (2022) Extratropical climate change during periods before and after an Arctic ice-free summer. Earth's Future, 10, e2022EF002881.
28. Xie Y, Wu G, Liu Y, et al. (2022) A dynamic and thermodynamic coupling view of the linkages between Eurasian cooling and Arctic warming. Climate Dynamics, 58, 2725–2744.
29. Wang G, He Y, Huang J, Guan X, Wang X, Hu H, Wang S, Xie Y. (2022) The influence of precipitation phase changes on the recharge process of terrestrial water storage in the cold season over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 127, e2021JD035824.
30. Sheng C, Wu G, Tang Y, He B, Xie Y, et al. (2021) Characteristics of the potential vorticity and its budget in the surface layer over the Tibetan Plateau. International Journal of Climatology, 41, 439–455.
31. Xie Y, Wu G, Liu Y, et al. (2020) Eurasian cooling linked with Arctic warming: Insights from PV dynamics. Journal of Climate, 33, 2627–2644.
32. Huang M, Li J, Zeng G, Xie Y. (2020) Regional characteristics of cloud radiative effects before and after the South China sea summer monsoon onset. Journal of Meteorological Research, 34, 1167–1182.
33. Xie Y, Huang J, Ming Y. (2019) Robust regional warming amplifications directly following the anthropogenic emission. Earth's Future, 7, 363–369.
34. Luo W, Guan X, Xie Y, et al. (2019) The key role of decadal modulated oscillation in recent cold phase. International Journal of Climatology, 39, 5761–5770.
35. He Y, Huang J, Li D, Xie Y, et al. (2018) Comparison of the effect of land-sea thermal contrast on interdecadal variations in winter and summer blockings. Climate Dynamics, 51, 1275–1294.
36. Xie Y, Huang J, Liu Y. (2017) From accelerated warming to warming hiatus in China. International Journal of Climatology, 37, 1758–1773.
37. Huang J, Xie Y, Guan X, et al. (2017) The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dynamics, 48, 429–446.
38. Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li Z, Zhang L, Liu Y, Yu H, He Y, Xie Y, et al. (2017) Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55, 719–778.
39. Ma J, Guan X, Guo R, Gan Z, Xie Y. (2017) Mechanism of non-appearance of hiatus in Tibetan Plateau. Scientific Reports, 7, 4421.
40. Zhang Y, Guan X, Yu H, Xie Y, et al. (2017) Contributions of radiative factors to enhanced dryland warming over East Asia. Journal of Geophysical Research: Atmospheres, 122, 7723–7736.
41. Xie Y, Liu Y, Huang J. (2016) Overestimated Arctic warming and underestimated Eurasia mid-latitude warming in CMIP5 simulations. International Journal of Climatology, 36, 4475–4487.
42. Guan X, Huang J, Zhang Y, Xie Y, et al. (2016) The relationship between anthropogenic dust and population over global semi-arid regions. Atmospheric Chemistry and Physics, 16, 5159–5169.
43. Huang J, Ji M, Xie Y, et al. (2016) Global semi-arid climate change over last 60 years. Climate Dynamics, 46, 1131–1150.
44. Ji M, Huang J, Xie Y, et al. (2015) Comparison of dryland climate change in observations and CMIP5 simulations. Advances in Atmospheric Sciences, 32, 1565–1574.
45. Liu Y, Sato Y, Jia R, Xie Y, et al. (2015) Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics, 15, 12581–12594.
46. 谢永坤, 刘玉芝,黄建平. (2014) 秋季北极海冰对中国冬季气温的影响. 气象学报, 72, 703–710.
47. Bi J, Shi J, Xie Y, et al. (2014) Dust aerosol characteristics and shortwave radiative impact at a Gobi Desert of Northwest China during the spring of 2012. Journal of the Meteorological Society of Japan. Ser. II, 92, 33–56.
48. Liu Y, Jia R, Dai T, Xie Y, et al. (2014) A review of aerosol optical properties and radiative effects. Journal of Meteorological Research, 28, 1003–1028.
49. 谢永坤, 刘玉芝, 黄建平, 等. (2013) 雪冰反馈对北半球经向温度梯度的影响. 地球科学进展, 28, 1276–1282.
50. Liu Y, Shi G, Xie Y. (2013) Impact of dust aerosol on glacial-interglacial climate. Advances in Atmospheric Sciences, 30, 1725–1731.


