English | 兰大首页

2021年6月30日星期三

黄忠伟

1718C

黄忠伟,教授,博士生导师,兰州大学萃英学者,甘肃省领军人才,教育部青年长江学者,现任兰州大学大气科学学院院长。长期从事激光雷达大气遥感、生物气溶胶探测及其气候效应研究,已发表SCI论文100余篇(H-index29),主持科技部国家重点研发计划项目课题、国家自然科学基金委面上项目、青年基金项目等国家级科研项目,以第一发明人获批国家发明专利8项、美国发明专利1项、德国发明专利1项;获批实用新型专利12项、软件著作权4项;2017年作为骨干成员入选首批全国高校黄大年式教师团队;2018年荣获甘肃省科技进步一等奖(4/12);2020年荣获甘肃省环境科学技术一等奖(3/9);2021年荣获兰州市优秀科技工作者称号,2022年荣获第十届甘肃青年科技奖、兰州大学国华青年英才奖,2023年荣获教育部国家研究生教学成果二等奖(5/15)。

黄忠伟教授立足于西北,在兰州大学建成了具有一定国际影响力、体系完备的激光雷达大气遥感研究中心,带领团队建设了“一带一路”气候与环境观测网(已建成7个国内站,2个国外站),该观测网将是丝绸之路经济带世界一流的气候与环境综合观测平台,并有望成为由兰州大学发起的国际大科学工程。

联系方式

通讯地址:甘肃省兰州市天水南路222号兰州大学大气科学学院

邮政邮编:730000

办公电话:0931-8912979

电子邮箱:huangzhongwei@lzu.edu.cn

讲授课程

1、国家精品课程《大气探测学》(本科生)

2、省级精品课程《雷达气象学》(本科生)

3、《大气遥感及应用》(研究生)

教育经历

2003.09-2007.07兰州大学物理科学与技术学院物理学专业(学士)

2007.09-2012.07兰州大学大气科学学院大气物理学与大气环境专业(博士)

2009.10-2010.10日本东北大学理学部(国家公派联合培养)

2010.10-2011.10日本国立环境研究所大气遥感研究中心(国家公派联合培养)

2013.01-2013.06台湾中央大学物理系(博士后)

工作经历

2009.09-2012.07 兰州大学大气科学学院 助教

2012.07-2016.07 兰州大学大气科学学院 讲师

2016.07-2019.11 兰州大学大气科学学院 副教授

2019.11-至今 兰州大学大气科学学院 教授

2018.09-2024.01 兰州大学大气科学学院 副院长

2024.01-至今 兰州大学大气科学学院 院长

荣誉获奖

教育部国家级教学成果奖(2023年,5/15)

兰州大学国华青年英才奖(2022年)

第十届甘肃青年科技奖(2022年)

甘肃领军人才称号(2021年)

兰州市优秀科技工作者称号(2021年)

甘肃省环境科学技术一等奖(2020年,3/9)

兰州大学青年五四奖章(2020年)

兰州大学萃英学者(2019年)

教育部青年长江学者(2018年)

甘肃省科技进步一等奖(2018年,4/12)

甘肃省第九届大学生创新创业大赛二等奖(2018年,指导老师)

首批全国高校黄大年式教师团队(2017年,骨干成员)

兰州大学本科生毕业论文“优秀指导教师”称号(2016年)

兰州大学“优秀班主任”称号(2015年)

学术兼职

甘肃省气象学会青年工作委员会副主任委员(2023.06-)

中国核学会计算物理分会第九届理事会理事(2023.10-)

中国激光杂志社第三届青年编辑委员会委员、《光学学报》青年编委(2023.01-2025.12)

国际大气环境遥感学会(“AERSS学会”)学会理事、第五工作组(Lidar group)联合主席;(2022.01-)

《大气与环境光学学报》青年编委(2020.12-2024.12)

代表性论文(第一或通讯作者)

1. Huang, Z., Dong, Q., Xue, F., Qi, J., Yu, X., Maki, T., Du, P., Gu, Q., Tang, S., Shi, J., Bi, J., Zhou, T., and Huang, J.*, 2024: Large-scale Dust-Bioaerosol field observations in East Asia. Bulletin of the American Meteorological Society. 105(3). E501–E517. doi.org/10.1175/BAMS-D-23-0108.1

2. Liu, Q., Huang, Z.*, Liu, J., Chen, W., Dong, Q., Wu, S., Dai, G., Li, M., Li, W., Li, Z., Song, X., and Xie, Y., 2024: Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network, Atmospheric Measurement Techniques, 17, 1403–1417, doi.org/10.5194/amt-17-1403-2024

3. Huang, Z., Yu, X., Liu, Q., Maki, T., Alam, K., Wang, Y., Xue, F., Tang, S., Du, P., Dong, Q., Wang, D., Huang, J.*, 2023. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. Science of The Total Environment 912, 168818. doi.org/10.1016/j.scitotenv.2023.168818

4. Qi, J., Huang, Z.*, Xue, F., Gao, Z., Maki, T., Zhang, Z., Liu, K., Ji, M., Liu, Y., 2023. Aridification alters the diversity of airborne bacteria in drylands of China. Atmospheric Environment 315, 120135. doi.org/10.1016/j.atmosenv.2023.120135

5. Ali, Md.A., Wang, Y., Bilal, M., Assiri, M.E., Islam, A.R.M.T., Malafaia, G., Huang, Z.*, Mhawish, A., Islam, M.N., Qiu, Z., Ahmed, R., Almazroui, M., 2023. Trace Gases over Land and Ocean Surfaces of China: Hotspots, Trends, and Source Contributions. Earth Systems and Environment, doi.org/10.1007/s41748-023-00354-0

6. Zhou, T., Zhou, X., Yang, Z., Córdoba-Jabonero, C., Wang, Y., Huang, Z.*, Da, P., Luo, Q., Zhang, Z., Shi, J., Bi, J., Alikhodja, H., 2023. Transboundary transport of non-east and East Asian dust observed at Dunhuang, northwest China. Atmospheric Environment 318, 120197. doi.org/10.1016/j.atmosenv.2023.120197

7. Wang, Y., Huang, Z.*, Zhou, T., Bi, J., Shi, J., 2023. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China. Optics Express 31, 22157. doi.org/10.1364/OE.493557

8. Ali, Md.A., Huang, Z.*, Bilal, M., Assiri, M.E., Mhawish, A., Nichol, J.E., De Leeuw, G., Almazroui, M., Wang, Y., Alsubhi, Y., 2023. Long-term PM2.5 pollution over China: Identification of PM2.5 pollution hotspots and source contributions. Science of The Total Environment 893, 164871. doi.org/10.1016/j.scitotenv.2023.164871

9. Du, P., Huang, Z.*, Tang, S., Dong, Q., Bi, J., Yu, X., Gu, Q., 2023. Long‐Term Variation of Dust Devils in East Asia During 1959–2021. Journal of Geophysical Research: Atmospheres 128, e2022JD038013. https://doi.org/10.1029/2022JD038013

10. Huang, Z.*, Dong, Q., Chen, B., Wang, T., Bi, J., Zhou, T., Alam, K., Shi, J., Zhang, S., 2023. Method for retrieving range-resolved aerosol microphysical properties from polarization lidar measurements. Optics Express 31, 7599. doi.org/10.1364/OE.481252

11. Huang, Z., Li, M., Bi, J.*, Shen, X., Zhang, S., Liu, Q., 2023. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources. Optics Express 31, 16909. doi.org/10.1364/OE.484501

12. Huang, Z., Shen, X., Tang, S., Zhou, T.*, Dong, Q., Zhang, S., Li, M., Wang, Y., 2023. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. Optics Express 31, 10541. doi.org/10.1364/OE.484335

13. Zhang, S., Huang, Z.*, Alam, K., Li, M., Dong, Q., Wang, Y., Shen, X., Bi, J., Zhang, J., Li, W., Li, Z., Wang, W., Cui, Z., Song, X., 2023. Derived Profiles of CCN and INP Number Concentrations in the Taklimakan Desert via Combined Polarization Lidar, Sun-Photometer, and Radiosonde Observations. Remote Sensing 15, 1216. doi.org/10.3390/rs15051216

14. Liu, Q., Huang, Z.*, Hu, Z., Dong, Q., Li, S., 2022. Long‐Range Transport and Evolution of Saharan Dust Over East Asia From 2007 to 2020. Journal of Geophysical Research: Atmospheres 127, e2022JD036974. doi.org/10.1029/2022JD036974

15. 黄忠伟, 王雍恺, 闭建荣, 王天河, 李武仁, 李泽, 周天, 2022: 气溶胶激光雷达的国内外研究进展与展望, 遥感学报, 26(5), doi: 10.11834/jrs.20221388.

16. Zhang, S., Huang, Z.*, Li, M., Shen, X., Wang, Y., Dong, Q., Bi, J., Zhang, J., Li, W., Li, Z., Song, X., 2022. Vertical Structure of Dust Aerosols Observed by a Ground-Based Raman Lidar with Polarization Capabilities in the Center of the Taklimakan Desert. Remote Sensing 14, 2461. doi.org/10.3390/rs14102461

17. Dong, Q., Huang, Z.*, Li, W., Li, Z., Song, X., Liu, W., Wang, T., Bi, J., Shi, J., 2022. Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert–Tibetan Plateau. Remote Sensing 14, 558. doi.org/10.3390/rs14030558

18. Qi, S., Huang, Z.*, Ma, X., Huang, J., Zhou, T., Zhang, S., Dong, Q., Bi, J., Shi, J., 2021. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Optics Express 29, 23461. doi.org/10.1364/OE.430456

19. Huang, Z., Huang, J.*, Gu, Q., Du, P., Liang, H., Dong, Q., 2020. Optimal temperature zone for the dispersal of COVID-19. Science of The Total Environment 736, 139487. doi.org/10.1016/j.scitotenv.2020.139487

20. Qi, J., Huang, Z.*, Maki, T., Kang, S., Guo, J., Liu, K., Liu, Y., 2020. Airborne bacterial communities over the Tibetan and Mongolian Plateaus: variations and their possible sources. Atmospheric Research 247, 105215. doi.org/10.1016/j.atmosres.2020.105215

21. Ma, X., Huang, Z.*, Qi, S., Huang, J., Zhang, S., Dong, Q., Wang, X., 2020. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. Science of The Total Environment 721, 137699. doi.org/10.1016/j.scitotenv.2020.137699

22. Huang, Z., Qi, S., Zhou, T.*, Dong, Q., Ma, X., Zhang, S., Bi, J., Shi, J., 2020. Investigation of aerosol absorption with dual-polarization lidar observations. Optics Express 28, 7028. doi.org/10.1364/OE.390475

23. Huang, Z.*, Nee, J.-B.*, Chiang, C.-W., Zhang, S., Jin, H., Wang, W., Zhou, T., 2018. Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements. Remote Sensing 10, 1017. doi.org/10.3390/rs10071017

24. Tang, K., Huang, Z.*, Huang, J., Maki, T., Zhang, S., Shimizu, A., Ma, X., Shi, J., Bi, J., Zhou, T., Wang, G., Zhang, L., 2018. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmospheric Chemistry and Physics, 18, 7131–7148. doi.org/10.5194/acp-18-7131-2018

25. Huang, Z., Huang, J.*, Hayasaka, T., Wang, S., Zhou, T., Jin, H., 2015. Short-cut transport path for Asian dust directly to the Arctic: a case study. Environmental Research Letters, 10, 114018. doi.org/10.1088/1748-9326/10/11/114018

26. Huang, Z., Huang, J.*, Bi, J., Wang, G., Wang, W., Fu, Q., Li, Z., Tsay, S., Shi, J., 2010. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China‐U.S. joint dust field experiment. Journal of Geophysical Research, 115, 2009JD013273. doi.org/10.1029/2009JD013273

合作者论文

1. Pan, H., Huang, J.*, Li, J., Huang, Z., Wang, M., Ali. Mamtimin., Huo, W., Yang, Fan, Zhou, Tian., and Kanike Raghavendra Kumar, 2024: The Tibetan Plateau space-based tropospheric aerosol climatology: 2007–2020. Earth System Science Data, 16, 1185–1207, doi.org/10.5194/essd-16-1185-2024

2. Jin, S., Ma, Y.*, Huang, Z., Huang, J., Gong, W., Liu, B., Wang, W., Fan, R., Li, H., 2023. A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia. Atmospheric Chemistry and Physics, 23, 8187–8210. doi.org/10.5194/acp-23-8187-2023

3. Chen, B.*, Dong, L., Huang, J., Wang, Y., Jing, Z., Yan, W., Wang, X., Song, Z., Huang, Z., Guan, X., Dong, X., Huang, Y., 2023. Analysis of Long‐Term Trends in the Vertical Distribution and Transport Paths of Atmospheric Aerosols in Typical Regions of China Using 15 Years of CALIOP Data. Journal of Geophysical Research: Atmospheres 128, e2022JD038066. doi.org/10.1029/2022JD038066

4. Ma, J., Li, R.*, Liu, H., Huang, Z., Wu, T., Wu, X., Zhao, L., Hu, G., Xiao, Y., Jiao, Y., Liu, W., Wang, S., Shi, J., Qiao, Y., 2023. Evaluation of CLM5.0 for simulating surface energy budget and soil hydrothermal regime in permafrost regions of the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology 332, 109380. doi.org/10.1016/j.agrformet.2023.109380

5. Haq, M., Iqbal, M.J., Alam, K., Huang, Z., Blaschke, T., Qureshi, S., Muhammad, S.*, 2023. Assessment of Runoff Components of River Flow in the Karakoram Mountains, Pakistan, during 1995–2010. Remote Sensing 15, 399. doi.org/10.3390/rs15020399

6. Cai, J., Zhou, Z., Huang, Z., Dai, W., Yu, F.R., 2023. Privacy-Preserving Deployment Mechanism for Service Function Chains Across Multiple Domains. IEEE Trans. Netw. Serv. Manage. 1–1. doi.org/10.1109/TNSM.2023.3311587

7. 廖家艳,周天,韩璧森,黄忠伟,闭建荣,2023:我国西北半干旱区气溶胶类型的地基激光雷达判别,干旱气象,41(04),570-578.

8. Dai, G., Wu, S., Long, W., Liu, J., Xie, Y., Sun, K., Meng, F., Song, X.*, Huang, Z., Chen, W., 2023. Aerosols and Clouds data processing and optical properties retrieval algorithms for the spaceborne ACDL/DQ-1. Aerosols/Remote Sensing/Data Processing and Information Retrieval. doi.org/10.5194/egusphere-2023-2182

9. 黄建平,张北斗,王丹凤,黄忠伟,陈思宇,陈 斌,李 旭,胡淑娟,2022:21世纪交叉学科的新方向:气候变化与重大疫情监测预警,兰州大学学报(医学版),48(11):1-3.DOI:10.13885/j.issn.1000-2812.2022.11.001.

10. Ahmad, M., Hussain, K., Nasir, J., Huang, Z., Alam*, K., Liaquat, S., Wang, P., Hussain, W., Mihaylova, L., Ali, A., Farhan, S.B., 2022. Air Quality Assessment along China-Pakistan Economic Corridor at the Confluence of Himalaya-Karakoram-Hindukush. Atmosphere 13, 1994. doi.org/10.3390/atmos13121994

11. Ma, J., Li, R.*, Huang, Z., Wu, T., Wu, X., Zhao, L., Liu, H., Hu, G., Xiao, Y., Du, Y., Yang, S., Liu, W., Jiao, Y., Wang, S., 2022. Evaluation and spatio-temporal analysis of surface energy flux in permafrost regions over the Qinghai-Tibet Plateau and Arctic using CMIP6 models. International Journal of Digital Earth 15, 1947–1965. doi.org/10.1080/17538947.2022.2142307

12. Chen, S., Tong, B., Russell, L.M., Wei, J., Guo, J., Mao, F., Liu, D.*, Huang, Z., Xie, Y., Qi, B., Zhang, H., Sun, Y., Zhang, B., Xu, C., Wu, L., Liu, D., 2022. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate. Remote Sensing of Environment 281, 113224. doi.org/10.1016/j.rse.2022.113224

13. Maki, T.*, Noda, J., Morimoto, K., Aoki, K., Kurosaki, Y., Huang, Z., Chen, B., Matsuki, A., Miyata, H., Mitarai, S., 2022. Long-range transport of airborne bacteria over East Asia: Asian dust events carry potentially nontuberculous Mycobacterium populations. Environment International 168, 107471. doi.org/10.1016/j.envint.2022.107471

14. Anwar, K., Alam, K.*, Liu, Yangang, Huang, Z., Huang, J., Liu, Yuzhi, 2022. Analysis of aerosol cloud interactions with a consistent signal of meteorology and other influencing parameters. Atmospheric Research 275, 106241. doi.org/10.1016/j.atmosres.2022.106241

15. Liu, C., Huang, Z., Huang, J.*, Liang, C., Ding, L., Lian, X., Liu, X., Zhang, L., Wang, D., 2022. Comparison of PM2.5 and CO2 Concentrations in Large Cities of China during the COVID-19 Lockdown. Advances in Atmospheric Science, 39, 861–875. doi.org/10.1007/s00376-021-1281-x

16. Usman, F., Zeb, B., Alam, K.*, Huang, Z., Shah, A., Ahmad, I., Ullah, S., 2022. In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan. Atmosphere 13, 124. doi.org/10.3390/atmos13010124

17. Ma, J., Li, R.*, Liu, H., Huang, Z., Wu, T., Hu, G., Xiao, Y., Zhao, L., Du, Y., Yang, S., 2022. The Surface Energy Budget and Its Impact on the Freeze-thaw Processes of Active Layer in Permafrost Regions of the Qinghai-Tibetan Plateau. Advances in Atmospheric Science, 39, 189–200. doi.org/10.1007/s00376-021-1066-2

18. Han, B., Zhou, T.*, Zhou, X., Fang, S., Huang, J., He, Q., Huang, Z., Wang, M., 2022. A New Algorithm of Atmospheric Boundary Layer Height Determined from Polarization Lidar. Remote Sensing 14, 5436. https://doi.org/10.3390/rs14215436

19. Bi, J.*, Li, Z., Zuo, D., Yang, F., Li, B., Ma, J., Huang, Z., He, Q., 2022. Dust Aerosol Vertical Profiles in the Hinterland of Taklimakan Desert During Summer 2019. Frontiers in Environmental Science, 10, 851915. doi.org/10.3389/fenvs.2022.851915

20. Qi, J., Ji, M., Wang, W., Zhang, Z., Liu, K., Huang, Z., Liu, Y.*, 2022. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. Science of The Total Environment 831, 154980. doi.org/10.1016/j.scitotenv.2022.154980

21. Han, Y., Wang, T.*, Tan, R., Tang, J., Wang, C., He, S., Dong, Y., Huang, Z., Bi, J., 2022. CALIOP-Based Quantification of Central Asian Dust Transport. Remote Sensing 14, 1416. doi.org/10.3390/rs14061416

22. Bi, J.*, Zuo, D., Yang, F., Zhang, L., Huang, Z., Wang, T., 2022. Surface radiation characteristics and downward cloud radiative forcing in southern Xinjiang during summer 2019. Meteorology and Atmospheric Physics, 134, 11. doi.org/10.1007/s00703-021-00847-5

23. Yang, L., Zhang, S.*, Huang, Z., Yang, Y., Wang, L., Han, W., Li, X., 2021. Characteristics of Dust Events in China from 2015 to 2020. Atmosphere 12, 952. doi.org/10.3390/atmos12080952

24. Wen, H., Zhou, Y., Xu, X., Wang, T., Chen, Quanliang, Chen, Qingcai, Li, W., Wang, Z., Huang, Z., Zhou, T., Shi, J., Bi, J., Ji, M., Wang, X.*, 2021. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Science of The Total Environment 789, 147971. doi.org/10.1016/j.scitotenv.2021.147971

25. Yang, L., Hu, Z.*, Huang, Z., Wang, L., Han, W., Yang, Y., Tao, H., Wang, J., 2021. Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China. Remote Sensing 13, 1056. doi.org/10.3390/rs13061056

26. Zhang, L., Tang, C., Huang, J., Du, T., Guan, X., Tian, P., Shi, J., Cao, X., Huang, Z., Guo , Q., Zhang, H., Wang, M., Zeng, H., Wang, F., and Dolkar, P., 2021.

Unexpected High Absorption of Atmospheric Aerosols Over a Western Tibetan Plateau Site in Summer. Journal of Geophysical Research: Atmospheres, 126, e2020JD033286. doi. org/10.1029/2020JD033286

27. Wang, T., Han, Y., Hua, W., Tang, J., Huang, J.*, Zhou, T., Huang, Z., Bi, J., Xie, H., 2021. Profiling Dust Mass Concentration in Northwest China Using a Joint Lidar and Sun-Photometer Setting. Remote Sensing 13, 1099. doi.org/10.3390/rs13061099

28. Liu, X., Huang, J.*, Li, C., Zhao, Y., Wang, D., Huang, Z., Yang, K., 2021. The role of seasonality in the spread of COVID-19 pandemic. Environmental Research 195, 110874. doi.org/10.1016/j.envres.2021.110874

29. Zhou, T., Xie, H., Jiang, T., Huang, J.*, Bi, J., Huang, Z., Shi, J., 2021. Seasonal characteristics of aerosol vertical structure and autumn enhancement of non-spherical particle over the semi-arid region of northwest China. Atmospheric Environment 244, 117912. doi.org/10.1016/j.atmosenv.2020.117912

30. Huang, J.*, Zhang, L., Liu, X., Wei, Y., Liu, C., Lian, X., Huang, Z., Chou, J., Liu, Xingrong, Li, X., Yang, K., Wang, J., Liang, H., Gu, Q., Du, P., Zhang, T., 2020. Global prediction system for COVID-19 pandemic. Science Bulletin 65, 1884–1887. doi.org/10.1016/j.scib.2020.08.002

31. Zhou, T., Xie, H., Bi, J., Huang, Z., Huang, J.*, Shi, J., Zhang, B., Zhang, W., 2018. Lidar Measurements of Dust Aerosols during Three Field Campaigns in 2010, 2011 and 2012 over Northwestern China. Atmosphere 9, 173. doi.org/10.3390/atmos9050173

32. Wang, X.*, Wen, H., Shi, J., Bi, J., Huang, Z., Zhang, B., Zhou, T., Fu, K., Chen, Q., Xin, J., 2018. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China.  Atmospheric Chemistry and Physics, 18, 2119–2138. doi.org/10.5194/acp-18-2119-2018

33. Xie, H., Zhou, T., Fu, Q., Huang, J.*, Huang, Z., Bi, J., Shi, J., Zhang, B., Ge, J., 2017. Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China. Optics Express 25, 30732. doi.org/10.1364/OE.25.030732

34. Gao, X., Cao, X., Tian, P., Zhang, L.*, Huang, Z., Zhou, T., 2017. Combined observation of a dust storm over the Loess Plateau using a dual-wavelength lidar and an aethalometer. Atmospheric Pollution Research 8, 1103–1112. doi.org/10.1016/j.apr.2017.04.010

35. Li, H., Yang, Y., Hu, X.-M., Huang, Z., Wang, G., Zhang, B., 2017. Application of Convective Condensation Level Limiter in Convective Boundary Layer Height Retrieval Based on Lidar Data. Atmosphere 8, 79. doi.org/10.3390/atmos8040079

36. Li, H., Yang, Y.*, Hu, X., Huang, Z., Wang, G., Zhang, B., Zhang, T., 2017. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. Journal of Geophysical Research: Atmospheres 122, 4578–4593. doi.org/10.1002/2016JD025620

37. Tian, P., Cao, X., Zhang, L.*, Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y., Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., Zhang, R., 2017. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing. Atmospheric Chemistry and Physics, 17, 2509–2523. doi.org/10.5194/acp-17-2509-2017

38. Tian, P., Cao, X., Zhang, L.*, Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y., Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., Zhang, R., 2016. Seasonal and spatial variations in aerosol vertical distribution andoptical properties over China from long-term satellite and groundbasedremote sensing. Atmospheric Chemistry and Physics Discussions,  doi.org/10.5194/acp-2016-749

39. Tian, P., Cao, X., Zhang, L.*, Wang, H., Shi, J., Huang, Z., Zhou, T., Liu, H., 2015. Observation and simulation study of atmospheric aerosol nonsphericity over the Loess Plateau in northwest China. Atmospheric Environment 117, 212–219. doi.org/10.1016/j.atmosenv.2015.07.020

40. Chen, S., Zhao, C., Qian, Y., Leung, L.R., Huang, J.*, Huang, Z., Bi, J., Zhang, W., Shi, J., Yang, L., Li, D., Li, J., 2014. Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Research 15, 15–30. doi.org/10.1016/j.aeolia.2014.02.001

41. Sugimoto, N.*, Huang, Z., 2014. Lidar methods for observing mineral dust.Journal of Meteorological Research, 28, 173–184. doi.org/10.1007/s13351-014-3068-9

42. Wang, J., Zhang, L., Huang, J.*, Cao, X., Liu, R., Zhou, B., Wang, H., Huang, Z., Bi, J., Zhou, T., Zhang, B., Wang, T., 2013. Macrophysical and optical properties of mid-latitude cirrus clouds over a semi-arid area observed by micro-pulse lidar. Journal of Quantitative Spectroscopy and Radiative Transfer 122, 3–12. doi.org/10.1016/j.jqsrt.2013.02.006

43. Sugimoto, N.*, Huang, Z., Nishizawa, T., Matsui, I., Tatarov, B., 2012. Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer. Optics Express 20, 20800. doi.org/10.1364/OE.20.020800

44. Huang, J.*, Zhang, W., Zuo, J., Bi, J., Shi, J., Wang, X., Chang, Z., Huang, Z., Yang, S., Zhang, B., Wang, G., Feng, G., Yuan, J., Zhang, L., Zuo, H., Wang, S., Fu, C., Jifan, C., 2008. An overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau. Advances in Atmospheric Sciences. 25, 906–921. doi.org/10.1007/s00376-008-0906-7

45. Huang, J.*, Huang, Z., Bi, J., Zhang, W., Zhang, L., 2008. Micro-Pulse Lidar Measurements of Aerosol Vertical Structure over the Loess Plateau. Atmospheric and Oceanic Science Letters 1, 8–11. doi.org/10.1080/16742834.2008.11446756

46. Huang, J.*, Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., Ayers, J.K., 2008. Long‐range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. Journal of Geophysical Research, 113, 2008JD010620. doi.org/10.1029/2008JD010620

更多文章请查看:https://www.researchgate.net/profile/Zhongwei-Huang-5

媒体报道

1.【兰州大学】大气科学学院赴乌兹别克斯坦交流 讨论共建野外观测站(2023-9-26)

https://news.lzu.edu.cn/c/202309/105473.html

2.【科技日报】“一带一路”气候与环境观测网首个国外观测站建成(2023-6-16)

https://app.kjrb.com.cn/app/template/displayTemplate/news/newsDetail/26836.html?isDigital=true&isShare=true

3.【网易】国外首个!兰州大学,正式建成(2023/6/26)

https://www.163.com/dy/article/I7HL9TUS0536N8D8.html

4.【KHOVAR】“New Laboratory for the Analysis and Monitoring of the Composition of the Atmosphere Opened at the Physico-Technical Institute of Tajikistan” (2023-06-19)https://eng.khovar.tj/2023/06/new-laboratory-for-the-analysis-and-monitoring-of-the-composition-of-the-atmosphere-opened-at-the-physico-technical-institute-of-tajikistan/

5.【YouTube】Tourism and Folk Crafts" - Opening of the Scientific Polygon of the PhTl NAST. (2023-06-19)

https://mp.weixin.qq.com/s/Sp3MVmqOQxLyfdv-cLx1sA

6.【科技日报】“一带一路”气候与环境观测网首个国外观测站建成(2023-06-19)

https://app.kjrb.com.cn/app/template/displayTemplate/news/newsDetail/26836.html?isDigital=true&isShare=true

7.【短视频】中国“一带一路”气候与环境观测网首个国外观测站建成(2023-06-19)

https://dazzle.gstv.com.cn/pages/details/details.html?companyId=D407CA0C210D49DF&productId=063DD3A8567E4FEC8B11E66128D24764&docid=7F948A95CA2C41429A977B42B0277539&isNew=yes&downloadTips=true

8.【气象学家】中国“一带一路”气候与环境观测网首个国外超级观测站建成投入使用(2023-06-19)

https://mp.weixin.qq.com/s/DNlCyDE_XwGrzFntd-C8IQ

9.【兰州大学】中国“一带一路”气候与环境观测网首个国外超级观测站建成投入使用(2023-06-14)

https://news.lzu.edu.cn/c/202306/101937.html

10.【中国经济网】China, Pakistan jointly build BRI lidar network--China Economic Net (2022-09-04)

http://en.ce.cn/Insight/202209/04/t20220904_38082782.shtml

11.【新华社】Across China: China, Pakistan join hands in weather observation(2022-08-25)

https://english.news.cn/20220825/04a5b4cb192d4155a7b019bfd2cd55fb/c.html

12.【ARABIC.NEWS.CN】

تقرير: الصين وباكستان تتعاونان في مجال مراقبة الطقس (2022-08-25)

https://arabic.news.cn/20220825/a4dff45f88094282871d00b5166b5aa4/c.html

13.【凤凰网】兰大"黑科技"落地中巴经济走廊 添力预报极端灾害天气(2022-08-25)

https://ishare.ifeng.com/c/s/v006HOUfI1p9ibq6I0ZQ-_-_RhUrpN3Y6hN4hK72ogSTBGcsvM6OQQcQkeyBdseLr-_qJ9T?spss=np&channelId=LOCAL&aman=ca8acB133Fe74u45bXd7f&gud=73t234u869

14.【新甘肃】兰州大学“一带一路”激光雷达网巴基斯坦白沙瓦站建成(2022-08-25)

https://xgs.newgscloud.com/html/micro/contentDetail.html?id=023145b906b54cad9ae6599a208832fc&ctid=023145b906b54cad9ae6599a208832fc&ct=1

15.【兰州大学】兰州大学“一带一路”激光雷达网巴基斯坦白沙瓦站正式建成(2022-08-19)

https://news.lzu.edu.cn/c/202208/92905.html

16.【兰州晚报】兰州大学大气科学学院副院长黄忠伟:建起“一带一路”激光雷达观测网(2022-01-24)

https://lzwb.lzbs.com.cn/content/202201/24/content_117545.html

17.【兰州大学】兰州大学黄忠伟教授受邀拍摄甘肃省庆祝建党百年主题纪录片《新时代的我们》 (2021-07-02)

https://news.lzu.edu.cn/c/202107/80587.html

18.【兰州大学】兰州大学2021年招生宣传片《势不可挡》发布!(2021-06-21)

https://mp.weixin.qq.com/s/cFAB-c9MGemtCxoLeG2bwg

19.【兰州大学】兰州大学“一带一路”激光雷达网甘肃民勤站揭牌仪式顺利举行-西部生态安全省部共建协同创新中心 (2021-04-12)

http://ciwes.lzu.edu.cn/info/1016/1622.htm

20.【中国教育新闻网】从"追光人”到"发光者”一记兰州大学雷达智造团队(2021-02-24)

http://www.jyb.cn/rmtzcg/xwy/wzxw/202101/t20210119_391164.html

21.【中国科学报】勇拆雷达的“追光”人(2021-02-09)

https://mp.weixin.qq.com/s/97UU08hJa_XTkvPkMCFLUA

22.【中国教育报】从“追光人”到“发光者”(2021-01-28)

http://paper.jyb.cn/zgjyb/html/2021-01/28/content_589985.htm?div=-1

23.【兰州大学】14年长跑,兰大这支团队让研发成果走向“一带一路” (2021-01-02)

https://mp.weixin.qq.com/s/6974m8Ihrt3MO0vSblr-DQ

24.【兰州大学西部生态安全省部共建协同创新中心】兰州大学“一带一路”激光雷达网新疆若羌站正式建(2020-10-17)

http://ciwes.lzu.edu.cn/info/1016/1415.htm

25.【兰州大学西部生态安全省部共建协同创新中心】黄忠伟教授、闭建荣高工出访巴基斯坦白沙瓦大学(2020-01-19)

http://ciwes.lzu.edu.cn/info/1016/1325.htm

26.【兰州大学西部生态安全省部共建协同创新中心】“一带一路”激光雷达网塔什库尔干站揭牌仪式顺利举行(2019-08-02)

http://ciwes.lzu.edu.cn/info/1016/1230.htm

27.【兰州大学】兰州大学“一带一路”激光雷达网塔吉克斯坦站建设正式启动(2018-11-23)

https://news.lzu.edu.cn/c/201811/52772.html

28.【兰州晨报】兰州大学 “一带一路”激光雷达网 2020年建成(2018-11-28)

https://news.lzu.edu.cn/c/201811/52880.html

29.【兰州晚报】“一带一路”倡议再结硕果兰大激光雷达网 塔吉克斯坦站启动建设(2018-11-28)

https://news.lzu.edu.cn/c/201811/52881.html

30.【光明日报】多波段拉曼-荧光激光雷达系统可用于雾霾探测(2014-01-18)

https://news.lzu.edu.cn/c/201401/29011.html

31.【甘肃日报】兰州大学研制出先进激光雷达系统技术成熟后可对雾霾成分进行分析(2014-01-18)

https://news.lzu.edu.cn/c/201401/29012.html

32.【中新网】兰州大学研制出新雷达系统 可对雾霾成分进行分析(2014-01-18)

https://news.lzu.edu.cn/c/201401/29013.html

33.【新华网】兰州大学自主研发新型激光雷达 有利于探测大气雾霾(2014-01-19)

https://news.lzu.edu.cn/c/201401/29014.html

34.【兰州大学】我校成功研制多波段拉曼-荧光激光雷达揭开大气颗粒物奥秘更进一步(2014-01-19)

https://news.lzu.edu.cn/c/201401/29016.html